Work, Energy and Power - Mark Scheme

Q1.

Question Number	Answer	Mark
	Either (1)	
	• Use of $\sin \theta = \frac{2.0}{15}$ Or use of $\theta = 7.7^{\circ}$ (1)	
	• Use of Work done = $F\Delta s$ Or use of $E_{grav} = mg\Delta h$ (1)	
	• Use of efficiency = $\frac{\text{useful energy output}}{\text{total energy input}} (\times 100 \%)$ (1)	
	 Efficiency = 83 or 84 % so less than 90 % 	
	(MP4 dependent on scoring all points MP1& 2 &3)	
	Example of calculation (1)	
	$\sin^{-1}\left(\frac{2.0}{15}\right) = 7.7^{\circ} \tag{1}$	
	$W_{50} = 50 \text{ kg} \times 9.81 \text{ N kg}^{-1} \times 2.0 \text{ m} \times \frac{2.0}{15} = 130.8 \text{ J}$ (1)	
	$W_8 = 8.0 \text{ kg} \times 9.81 \text{ N kg}^{-1} \times 2.0 \text{ m} = 157.0 \text{ J}$ (1)	4
	Efficiency = $\frac{130.8 \text{ J}}{157.0 \text{ J}} \times 100 \% = 83 \%$	
	Total for question	4

Q2.

Question Number	Answer	Mark
	C is the correct answer as 1 kWh = $1000 \text{ W} \times 3600 \text{ s} = 3.6 \times 10^6 \text{ J}$	(1)
	A is not the correct answer as $0.28 \text{ J} = \frac{1000 \text{ W}}{3600 \text{ J}}$	
	B is not the correct answer as $0.28 \text{ W} = \frac{1000 \text{ W}}{3600 \text{ J}}$ and the unit should be J and not W	
	D is not the correct answer as the unit should be J and not W.	

Q3.

Question Number	Answer	Mark
	C is the correct answer as efficiency = $\frac{\text{useful energy output}}{\text{total energy input}} = \frac{200 \text{ N} \times 4 \text{ m}}{90 \text{ N} \times 10 \text{ m}}$	(1)
	A is not the correct answer as this is the total energy input divided by the useful energy output B is not the correct answer as this is the useful energy output divided by the total of the energy output and the energy input D is not the correct answer as this is the total energy input divided by the total of the energy output and the energy input	

Q4.

Question Number	Answer	Mark
	A is the correct answer as $E_{\rm gray}$ decreases at an increasing rate as the ball	(1)
	accelerates towards the ground and increases at a decreasing rate as the ball decelerates away from the ground after the bounce	
	B is not the correct answer as $E_{\rm grav}$ increases as the height of the ball above the ground decreases and decreases as height of the ball above the ground increases. C is not the correct answer as the graph does not show the change in as $E_{\rm grav}$ at an	
	increasing and decreasing rate as in response A, as the height of the ball above the ground changes	
	D is not the correct answer as $E_{\rm grav}$ increases as the height of the ball above the ground decreases and decreases as the height of the ball above the ground increases.	

Q5.

Question	Answer	Mark
Number		
	The only correct answer is B as power output = kinetic energy per second of the ejected water. $P = \frac{\frac{1}{2} \times 0.2 \ kg \times (3 \ m \ s^{-1})^2}{1 \ second} = \frac{0.2 \times 3^2}{2}$	(1)
	A is not the correct answer because the mass has not been converted into kg which is required for a power in watts. C is not the correct answer because the mass is in g and the velocity has not been squared D is not the correct answer because the velocity has not been squared	

Q6.

Question	Answer		Mark
Number			
(a)	• Use of $v^2 = u^2 + 2as$ AND $u = 0$ Or $mgh = \frac{1}{2}mv^2$	(1)	
	• $v = 3.4 \text{ (m s}^{-1})$	(1)	
	Example of calculation $v^2 = 2 \times 9.81 \text{ m s}^{-2} \times 0.60 \text{ m}$ $v = \sqrt{11.77} \text{ m s}^{-1}$ $v = 3.43 \text{ m s}^{-1}$		
	, 5.15 5		(2)
(b)	 Horizontal 3.4 × sin 70° Or 3.4 × cos 20° Or calculated value. Vertical 3.4 × cos 70° Or 3.4 × sin 20° 1.16 Or calculated value. 	(1)	
	Allow e.c.f. from part (a)	(1)	(2)

(c)	Use of $v = s/t$ to determine time to end of ramp (0.38 s).		
	 Use of s = ut - ½ g t² to determine drop in altitude after time t (0.27 m). 	(1)	
	Ball does not bounce on the ramp.	(1)	
	 Justifies conclusion from numbers calculated. e.g. 0.86 – 0.27 > 0.00 means has not reached ground by end of ramp. 	(1)	
	Example of calculation	(1)	
	$t = \frac{1.23 \text{ m}}{3.4 \text{ m s}^{-1} \times \sin 70^{\circ}}$		
	t = 0.39 s		
	$s = (3.4 \text{ (m s}^{-1}) \times \cos 70^{\circ} \times 0.39 \text{ s}) + (\frac{1}{2} \times (-9.81 \text{ m s}^{-2}) \times (0.39 \text{ s})^{2})$		
	s = -0.28 m		

Or		
• Use of $s = ut - \frac{1}{2}gt^2$ to determine time to $s = -0.86$		
• Use of $s = vt$ to calculate s	(1)	
Ball does not bounce on the ramp.	(1)	
 Justifies conclusion from numbers calculated. e.g. 1.23 < 1.79 	(1)	
Or	(1)	
• Use of $v = u - gt_1$ with $v = 0$ to get time to max height (0.12s) and	(1)	
use of $s = \frac{1}{2} g t_1^2$ to get gain in height (0.07m) and use of $s = ut + \frac{1}{2} g t_2^2$ with $u = 0$ and $s = 0.93$ to get time from there to the ground (0.44s) Total time $t = t_1 + t_2$.	(1)	
• Use of $s = vt$ to calculate s	(1)	
Ball does not bounce on the ramp.	(1)	
 Justifies conclusion from numbers calculated. e.g. 1.23 < 1.79 	(1)	(4)

Q7.

Question	Answer	Mark
Number		
	D is the correct answer	
	A is not the correct answer as it gives units of J-1 which is not a unit for energy.	
	B is not the correct answer for the same reason that A is not. C is not the correct answer as 68 ≠ 68%.	(1)

Q8.

Question	Answer		Mark
Number			
	Horizontal force/component = $F\cos\theta$	(1)	
	-		
	Work done = $F_H \times s$		
	Or Work done = $F \cos \theta \times s$	(1)	
	As θ increases, $\cos\theta / F_H / F \cos\theta$ decreases so work done decreases.		
	Or As θ decreases, $\cos\theta / F_H / F \cos\theta$ increases so work done increases.	(1)	(3)
		. /	` ′
	Total for question		3