Momentum - Questions by Topic

Q1.

A child is standing on a skateboard and both are stationary. The child throws a ball forward at a high velocity and the child and the skateboard move backwards at a lower velocity.

Before After

Explain, in terms of momentum, why the child and the skateboard move backwards at a lower velocity.

(4)

(Total for question = 4 marks)

Q2.

Trolleys X and Y of masses m and 3m respectively are travelling at the same speed towards each other. The trolleys collide and move off together.

Which of the following statements is correct?

- A The force of X on Y during the collision is greater than the force of Y on X.
- **B** The force of X on Y during the collision is less than the force of Y on X.
- \square **C** The speed of X after the collision is greater than v.
- \square **D** The speed of X after the collision is less than v.

(Total for question = 1 mark)

Q3.

Popcorn kernels contain water. When heated, the water turns to steam. The kernel 'pops' and moves upwards.

(a) The photographs above show a popcorn kernel just before popping and at the maximum height after popping. The time between the two photographs was 83 ms.	1
(i) Determine the maximum height after popping.	
	(2)
Maximum height =	
(ii) Calculate the initial speed of the 'popped' popcorn kernel.	
	(3)
Initial speed =	
(b) The average water content in a popcorn kernel is 14% of the total mass of the kernel.	
A kernel is heated until it pops. Steam is ejected downwards, and the popped kernel moves upwards with an initial speed of 1.5 m $\rm s^{-1}.$	
Calculate the speed at which the steam is ejected.	
total mass of unpopped kernel = 0.11 g	
	(4)

Speed =

(Total for question = 9 marks)

Q4.

P and Q are identical spheres. Sphere P moves along a smooth horizontal surface and collides with sphere Q, which is initially stationary.

After the collision:

- sphere P moves off with a momentum of 0.096 kg m s⁻¹ in a direction of 15° to its initial direction
- sphere Q moves off with a momentum of 0.14 kg m s⁻¹ in a direction of 10° as shown.

(a) Use a scaled vector diagram to show that the magnitude of the total momentum of spheres P and Q after the collision is about 0.2 kg m s^{-1} .

(4)

(h) State the prin	nciple of conservation of linear momentum	
(b) State the prin	nciple of conservation of linear momentum.	
	nciple of conservation of linear momentum.	
	e initial velocity of sphere P.	(2)
(c) Calculate the	e initial velocity of sphere P.	
(c) Calculate the	e initial velocity of sphere P.	

(Total for question = 8 marks)

Q5.

Which of the following quantities has the SI base units kg m^2 s⁻³?

- A force
- momentum
- power
- work done

(Total for question = 1 mark)

Q6.

A student set up the apparatus shown.

(a) When released from a height h, trolley A ran down the slope and then continued to move horizontally. On the horizontal part of the track a frictional force F brought the trolley to rest over a short distance d. The trolley has a mass m. The student measured d for a range of heights h.

The student plotted the following graph of *d* against *h*.

Edexcel (IAL) Physics A-level

Derive an expression for the gradient of the graph, in terms of \emph{F} , \emph{m} and \emph{g} .	
	(2)
(b) In a second experiment, an identical trolley B was placed at rest at the bottom of the slow When trolley A was released as before, it rolled down and collided with trolley B. After the collision the two trolleys joined together and moved off to the right with a velocity v .	pe.
A	
h B	
The student predicted that, provided friction was ignored, $v = \sqrt{\frac{gh}{2}}$	
Assess whether the student was correct.	
	(4)

(Total for question = 6 marks)