Momentum - Mark Scheme

Q1.

Question Number	Answer	Mark
	Max 4	
	Initial momentum (of the child, ball and skateboard/total) is zero (1)	
	Due to conservation of momentum, the total momentum before the ball is thrown = total momentum after the ball is thrown (so final total momentum is zero)	
	The momentum of the child/skateboard is equal to the momentum of the ball	
	The momentum of the child/skateboard is opposite in direction to the momentum of the ball	
	As the mass of the child/skateboard greater (than the mass of ball), the velocity (of the child/skateboard) will be lower (1)	4
	(all symbols to be defined, 'mv' to be defined if used for momentum)	
	(MP3 accept to the right/positive for forwards)	4
	Total for question	4

Q2.

Question	Answer	Mark
Number		
	D is the correct answer	
	A is not the correct answer as it contradicts Newton's Third Law. B is not the correct answer as it also contradicts Newton's Third Law. C is not the correct answer as the force of Y on X is in the opposite direction to the velocity	
	of X.	(1)

Q3.

Question	Answer	Mark
Number		
(a)(i)	Use measurement and scaling factor (1) (1)	
	• $h = 3.4 \pm 0.1 \text{ cm}$ (1)	
	OR	
	• Use of $s = \frac{1}{2}at^2$ with $t = 0.083$ s (1)	
	• $h = 3.4 \text{ cm}$ (1)	(2)

(ii)	 Use of (average) speed = s/t with s = value from part (a)(i) 	(1)
	• Use of initial speed = 2 × average speed	(1)
	• Speed = $0.82 \text{ m s}^{-1} \text{ ecf from (a)(i)}$	(1)
	OR	
	• Use of $E_g = mgh$ with $h = \text{value from (a)(i)}$	(1)
	• Use of $\frac{1}{2}mv^2 = E_g(initial)$	(1)
	• Speed = 0.82 m s^{-1} ecf from (a)(i)	(1)
	OR	(1)
	• Use of $v = u + at$ with $v = 0$	
	• Use of $a = -g$	(1)
	• Speed = $9.81 \times 0.083 = 0.81 \text{ m s}^{-1}$	(1)
	OR	
	• Use of with $s = ut + \frac{1}{2}at^2$ with $s = \text{value from part (a)(i)}$	(1)
	• Use of $a = -g$	(1)
	• Speed = 0.82 m s^{-1} ecf from (a)(i)	(1)
	Example of calculation $u = s/t - \frac{1}{2}at$ $u = 0.034/0.083 + \frac{1}{2} \times 9.81 \times 0.083$	
	OR	
	• Use of $v^2 = u^2 + 2as$ with $s = $ value from (a)(i) and $v = 0$	(1)
	• Use of $a = -g$	(1)

	• Speed = 0.82 m s ⁻¹ ecf from (a)(i))
	Example of calculation	
	Actual distance travelled by popcorn = 6.2 cm ÷ 1.8 = 3.4 cm (average speed) = $\frac{0.034 \text{ m}}{83 \times 10^{-8} \text{ s}}$ = 0.41 m s ⁻¹	
	Initial speed = $2 \times \text{average speed} = 0.82 \text{ m s}^{-1}$	(3)
(b)	Use of 14% to determine mass (of water/popcorn). (1)
	$Or m_{\text{popcorn}}/m_{\text{water}} = 86/14$	
	• Use of $p = mv$ (1)
	Use of momentum conservation)
	• $v = (-) 9.2 \text{ m s}^{-1}$ (1)
	Example of calculation $0 = (0.0946 \text{ g} \times 1.5 \text{ m s}^{-1}) + (0.0154 \text{ g} \times v)$ $v = \frac{-0.0946 \text{ g} \times 1.5 \text{ m s}^{-1}}{0.0154 \text{ g}}$ $v = -9.21 \text{ m s}^{-1}$	
		(4)

Question	Answer		Mark
Number			
(a)	 Construction of correct vector diagram (parallelogram or triangle) with all 3 directions and 0.096 (kg m s⁻¹) and 0.14(kg m s⁻¹) labelled 	(1)	
	 Momenta correctly scaled (ratio of lengths 0.14 to 0.096 rounds to between 1.40 and 1.50) 	(1)	
	Horizontal resultant (to within a slope of 1 small square)	(1)	
	• Total momentum = 0.22 to 0.24 (kg m s ⁻¹)	(1)	4
	(Do not award MP4 if this value has been obtained by calculation or from an incorrect diagram)		
	0.096 kg m s ⁻¹		
	0.14 kg m s ⁻¹		
(b)	The sum/total momentum before a collision is equal to the sum/total momentum after a collision	(1)	
	Provided no external forces act (on the system) Or in a closed system	(1)	2
(c)	• Use of $p = mv$	(1)	
	• $v = 1.9 \text{ m s}^{-1}$	(1)	2
	$(v = 1.7 \text{ m s}^{-1} \text{ using show that value and allow ecf from (a)},$ $v = 2.0 \text{ m s}^{-1} \text{ if } 0.236 \text{ kg m s}^{-1} \text{ used)}$		
	Example of calculation $0.23 \text{ kg m s}^{-1} = 0.12 \text{ kg} \times v$ $v = 1.92 \text{ m s}^{-1}$		
	Total for question		8

Q5.

Question Number	Answer	Mark
	C is the correct answer	
	A is not the correct answer as units would be kg m s ⁻² B is not the correct answer as units would be kg m s ⁻¹	
	D is not the correct answer as units would be kg m s - D is not the correct answer as units would be kg m ² s - ²	(1)

Number (a) Use of $(\Delta)E_{gav} = Fd$ Or Use of $E_k = (\Delta)E_{gav}$ AND Use of $v^2 = u^2 + 2as$ with $a = -\frac{F}{m}$ (1) Gradient = $\frac{mg}{F}$ Or $\frac{d}{h} = \frac{mg}{F}$ (1) Example of calculation $mgh = Fd$ $\frac{d}{h} = \frac{mg}{F}$ (1) Use of $p = mv$ (1) Use of $p = mv$ (1) Some working leading to the correct expression AND statement that the student is correct. (1) Example of calculation $mgh = \frac{1}{2}mv^2$ $v = \sqrt{2gh}$ $m\sqrt{2gh} = 2mv$ $v = \frac{\sqrt{2gh}}{2} = \frac{gh}{2}$ Total for question 6	Question	Answer		Mark
(a) Use of $(\Delta)E_{gav} = Fd$ Or Use of $E_k = (\Delta)E_{gav}$ AND Use of $v^2 = u^2 + 2as$ with $a = -\frac{F}{m}$ (1) Gradient = $\frac{mg}{F}$ Or $\frac{d}{h} = \frac{mg}{F}$ (1) Example of calculation $mgh = Fd$ $\frac{d}{h} = \frac{mg}{F}$ (1) (b) $u = \sqrt{2gh}$ (1) (Do not allow if suvat used with $a = g$) Use of $p = mv$ (1) $m_1u = (m_1 + m_2)v$ (either seen or used) (Do not allow if there is an m_2u term unless $u = 0$) (1) Some working leading to the correct expression AND statement that the student is correct. (1) Example of calculation $mgh = \frac{1}{2}mv^2$ $v = \sqrt{2gh}$ $m\sqrt{2gh} = 2mv$ $v = \frac{\sqrt{2gh}}{2} = \sqrt{\frac{gh}{2}}$		Allswei		IVIAIK
(b) $u = \sqrt{2gh}$ (1) (Do not allow if suvat used with $a=g$) Use of $p = mv$ (1) $m_1u = (m_1 + m_2)v$ (either seen or used) (Do not allow if there is an m_2u term unless $u=0$) (1) Some working leading to the correct expression AND statement that the student is correct. (1) Example of calculation $mgh = \frac{1}{2}mv^2$ $v = \sqrt{2gh}$ $m\sqrt{2gh} = 2mv$ $v = \frac{\sqrt{2gh}}{2} = \sqrt{\frac{gh}{2}}$		Or Use of $E_k = (\Delta)E_{grav}$ AND Use of $v^2 = u^2 + 2as$ with $a = -\frac{F}{m}$ Gradient = $\frac{mg}{F}$ Or $\frac{d}{h} = \frac{mg}{F}$ Example of calculation $mgh = Fd$		(2)
(Do not allow if suvat used with $a=g$) Use of $p=mv$ (1) $m_1u=(m_1+m_2)v$ (either seen or used) (Do not allow if there is an m_2u term unless $u=0$) Some working leading to the correct expression AND statement that the student is correct. (1) Example of calculation $mgh = \frac{1}{2}mv^2$ $v = \sqrt{2gh}$ $m\sqrt{2gh} = 2mv$ $v = \frac{\sqrt{2gh}}{2} = \sqrt{\frac{gh}{2}}$	(b)	* •	(1)	
Total for question 6	(b)	(Do not allow if suvat used with $a=g$) Use of $p = mv$ $m_1u = (m_1 + m_2)v$ (either seen or used) (Do not allow if there is an m_2u term unless $u=0$) Some working leading to the correct expression AND statement that the student is correct. Example of calculation $mgh = \frac{1}{2}mv^2$ $v = \sqrt{2gh}$ $m\sqrt{2gh} = 2mv$	(1)	(4)
		Total for question		6