Hooke's Law and Young's Modulus - Mark Scheme

Q1.

Question Number	Answer		Mark
(a)	Use of Young modulus = gradient (of either initial linear region of graph)	(1)	
	(MP1 accept ratios of co-ordinates up to strains of $(E_{28})0.0015$ or (E_2) 0.0014)		
	• See 3.2 to 3.3×10^{10} (Pa) Or 4.2 to 4.4×10^{10} (Pa)	(1)	
	 Comparison of the two values obtained i.e. use of E₂₈/E₂ Or (E₂₈-E₂)/E₂ 	(1)	
	• $E_{28}/E_2 = 1.30$ to 1.40 Or $(E_{28}-E_2)/E_2 = 0.30$ to 0.40	(1)	4
	(MP4 is conditional on candidates using the linear sections for both graphs in MP1)		
	Example of calculation $E_{28} = \frac{140 \times 10^{6} \text{ Pa}}{0.0032} = 4.38 \times 10^{10} \text{ Pa}$ $E_{2} = \frac{104 \times 10^{6} \text{ Pa}}{0.0032} = 3.25 \times 10^{10} \text{ Pa}$		
	$E_{28}/E_2 = \frac{4.38 \times 10^{-10} \text{ Pa}}{3.25 \times 10^{-10} \text{ Pa}} = 1.35$		
(b)	 Use of counting squares or approximation of the area to a series of shapes from the 28-day graph 	(1)	
	• 0.35 × 10 ⁶ - area under 28-day graph 0.35 × 10 ⁶	(1)	
	• Percentage reduction = 12.0 % to 15.0 %	(1)	3
	$\frac{\text{Example of calculation}}{\Delta E_{28} = (\frac{1}{2} \times 80 \times 10^6 \text{ Pa} \times 0.0019) + [\frac{1}{2} (80 + 128) \text{ Pa} \times 10^6 \times (0.0038 - 0.0019)] + (64 \times 0.0001 \times 4 \times 10^6 \text{ Pa}) = 299 \ 200 \ \text{J m}^{-3}$		
	Percentage reduction = $\frac{350\ 000\ J\ m^{-8} - 299\ 200\ J\ m^{-8}}{350\ 000\ J\ m^{-8}} \times 100 = 14.5\ \%$		
(c)	The breaking stress/force is greater	(1)	
	The concrete is less flexible Or the concrete is stiffer (Do not accept a greater Young modulus)	(1)	
	There is a smaller plastic region Or the elastic region is greater Or there's little change in the toughness		
	Or a change in the properties of the concrete after you've used it could cause problems	(1)	3
	Total for question		10

Question Number	Answer		Mark
(a)	Compares ≈40 (MPa) (compression) with ≈10 (MPa) (tension)	(1)	
	Breaking/fracture/ultimate stress/force (much) greater under compression Or Breaking/fracture/ultimate stress is 40 MPa under compression, and 10 MPa under tension. Or Breaking/fracture/ultimate stress is 30 MPa greater under compression.	(1)	(2)
	(If no other mark scored, allow 1 mark for greater energy absorbed/stored under compression)		
(b)	Breaking stress = 5.00 to 5.10×10^8 Pa)	(1)	
	Use of $\sigma = F/A$	(1)	
	$F = 8.0/8.1 \times 10^5 \mathrm{N}$	(1)	(3)
	Example of calculation $A = \pi \times (2.25 \times 10^{-2} \text{ m})^2 = 1.59 \times 10^{-3} \text{ m}^2$ $F = 1.59 \times 10^{-3} \text{ m}^2 \times 5.05 \times 10^8 \text{ Pa} = 8.03 \times 10^5 \text{ N}$		
(c)(i)	Concrete can withstand high(er) stress/force under compression Or Concrete is strong(er) under compression	(1)	
	The concrete remains under compression when tensile force applied. Or Applied/tensile force first has to overcome the compression Or When tensile force applied, concrete is still under compression	(1)	
	The steel/rods take (some of) the force/stress		
	Or The force/stress causes deformation of the steel	(1)	
	Steel can withstand a large(r) tensile force/stress Or Steel is strong(er) under tension		
	Or Ultimate tensile stress of steel is large(r)	(1)	(4)
(c)(ii)	(When force removed) the rod will not return to its original length/shape Or The rod will be permanently/plastically deformed	(1)	
	the concrete will not compress (as much)		
	Or The compression force will be less/zero	(1)	(2)
	Total for question		11

Question	Answer	Mark
Number		
(a)	 Ratio of stress to strain (for a material). Or stress per unit strain. Or σ / ε with symbols defined. Or π/A Δx with symbols defined. 	
		(1)
(b)(i)	Mean diameter = 0.234 mm (rounds to) (1)	
	• Use of $A = \pi r^2$	
	• $A = 4.3 \times 10^{-8} \mathrm{m^2 \ or \ 0.043 \ mm^2}$ (1)	
	Example of calculation Mean diameter = $\frac{1}{4}$ (0.230 + 0.235 + 0.230 + 0.240) = 0.234 mm (1)	
	Area = $\pi \frac{(0.234 \times 10^{-3} m)^2}{4} = 4.30 \times 10^{-8} \text{m}^2$	(3)
(b)(ii)	• Use of $W = m g$ (1)	
	 Use of gradient = m / Δx in Young Modulus formula i.e. E = gradient × g × x /A 	
	• $E = 1.6 \times 10^{11} \text{Pa}$ e.c.f. from (b)(i) (1)	
	Example of calculation 3.50 m	
	Young modulus = $195 \times 9.81 \text{ N kg}^{-1} \times \frac{3.50 \text{ m}}{4.30 \times 10^{-8} \text{ m}^2}$ = $1.56 \times 10^{11} \text{ Pa}$	
	-1.50 % 10 14	(3)
(b)(iii)	Shorter wire gives greater gradient. (1)	
	Young modulus the same. (1)	
		(2)

Answer		Mark
Use of fall factor =	(1)	
total unstretched length of rope		
$\Delta x = 15.0$		
Use of $\varepsilon = \frac{1}{x}$ with $x = 15.0$ m	(1)	
Use of $E_{\text{grav}} = mg\Delta h$	(1)	
Use of $E_{\text{grav}} = E_{\text{el}}$ with their Δx	(1)	
F 14 000 OD	(1)	_
$F_{\text{max}} = 14000(\text{N})$	(1)	5
Example of calculation		
$8358 \text{ J} + 940.3 \text{ J} = \frac{1}{2} \times F_{\text{max}} \times 1.35 \text{ m}$		
$F_{\text{max}} = 13 775 \text{ N}$		
This would not be a good idea, as the climber would reach a higher velocity		
(just before the rope stretches)	(1)	
(Hence) the climber's deceleration/force (as the rope stretches) would be		
	(1)	2
	Use of fall factor = $\frac{\text{height fallen before the rope begins to stretch}}{\text{total unstretched length of rope}}$ Use of $\varepsilon = \frac{\Delta x}{x}$ with $x = 15.0$ m Use of $E_{\text{grav}} = mg\Delta h$ Use of $E_{\text{grav}} = E_{\text{el}}$ with their Δx $F_{\text{max}} = 14000\text{(N)}$ Example of calculation Height fallen = $15.0\text{m} \times 0.8 = 12\text{m}$ $\Delta x = 0.09 \times 15.0\text{m} = 1.35\text{m}$ $E_{\text{grav}} = 71\text{kg} \times 9.81\text{N kg}^{-1} \times 12\text{m} = 8358\text{J (from fall)}$ $E_{\text{grav}} = 71\text{kg} \times 9.81\text{N kg}^{-1} \times 1.35\text{m} = 940.3\text{J (from extension)}$ $8358\text{J} + 940.3\text{J} = \frac{1}{2} \times F_{\text{max}} \times 1.35\text{m}$ $F_{\text{max}} = 13775\text{N}$ This would not be a good idea, as the climber would reach a higher velocity	Use of fall factor = $\frac{\text{height fallen before the rope begins to stretch}}{\text{total unstretched length of rope}}$ (1) Use of $\varepsilon = \frac{\Delta x}{x}$ with $x = 15.0$ m (1) Use of $E_{\text{grav}} = mg\Delta h$ (1) Use of $E_{\text{grav}} = E_{\text{el}}$ with their Δx (1) $E_{\text{max}} = 14000\text{(N)}$ (1) Example of calculation Height fallen = $15.0\text{m} \times 0.8 = 12\text{m}$ $\Delta x = 0.09 \times 15.0\text{m} = 1.35\text{m}$ $E_{\text{grav}} = 71\text{kg} \times 9.81\text{N kg}^{-1} \times 12\text{m} = 8358\text{J (from fall)}$ $E_{\text{grav}} = 71\text{kg} \times 9.81\text{N kg}^{-1} \times 1.35\text{m} = 940.3\text{J (from extension)}$ 8358 J + $940.3\text{J} = \frac{1}{2} \times F_{\text{max}} \times 1.35\text{m}$ $F_{\text{max}} = 13775\text{N}$ • This would not be a good idea, as the climber would reach a higher velocity (just before the rope stretches) (1) • (Hence) the climber's deceleration/force (as the rope stretches) would be

(b)		Max 6		
	•	Use of area under the graph to determine the stored energy	(1)	
	•	Energy = 800 J (new)	(1)	
	•	Energy = 700 J (old)	(1)	
	•	The old rope would absorb/store less energy	(1)	
	•	Use of $F = k\Delta x$ to determine k	`	
		(accept gradient of a tangent)	(1)	
	•	Calculation of k for both ropes at same applied force	(1)	
	•	The old rope is not as stiff as the new rope	(1)	
		Or The old rope extends more	(1)	6
	•	The old rope would break at a smaller applied force/stress		
	To	tal for question		13

Q5.

Question Number	Answer	Mark
	A is the correct answer as strain = $\frac{\text{extension}}{\text{original length}} = \frac{0.2}{50}$	(1)
	B is not the correct answer as the extension in mm was not converted to cm before being used in the equation for strain	
	C is not the correct answer as the extension in mm was not converted to cm and the incorrect formula of original length/extension was used	
	D is not the correct answer as the incorrect formula of original length/extension was	
Edexcel (I/	AL) Physics A-level 4 PhysicsAndh	MathsTutor.com

Q6.

Question	Answer	Mark
Number		
	C is the correct answer	
	A is not the correct answer as every column is wrong. B is not the correct answer as the P and Q columns are the wrong way round.	40
	D is not the correct answer as the Q and R columns are the wrong way round.	(1)

Q7.

Number (a)(i)			
(a)(i)			
	• $E_{\text{el}} = \frac{1}{2} k \Delta x^2$ Or Use of $E_{\text{el}} = \frac{1}{2} F \Delta x$ and use of $F = k \Delta x$.	(1)	
	• Elastic PE is transferred into kinetic energy $\mathbf{Or} \; E_{el} = E_k$	(1)	
		(1)	
	• $\frac{1}{2}mv^2 = \frac{1}{2}k\Delta x^2$		
	• States that m and k are constant so $v \propto \Delta x$. Or States that $= \sqrt{\frac{k}{m}} \Delta x$.	(1)	
	Or states that $=\sqrt{-\Delta x}$.		(4)
(a)(ii)	Gradient calculated. Or Use of a point on the line in a relevant equation. ((1)	
	• Use of $\frac{1}{2} k \Delta x^2 = \frac{1}{2} m v^2$ or gradient = $\sqrt{(k/m)}$ i.e. $k = m \times \text{gradient}^2$	(1)	
	• k in range 22 – 26 N m ⁻¹	(1)	
	Example of calculation Gradient $\frac{4.8 \text{ m s}^{-1} - 2.2 \text{ m s}^{-1}}{0.30 \text{ m}} = 8.67 \text{ (s}^{-1})$ $k = \text{mass} \times \text{gradient}^2$ $k = 3.0 \times 10^{-1} \text{ kg} \times (8.67 \text{ s}^{-1})^2$		
	$k = 3.0 \times 10^{-4} \text{ kg} \times (8.07 \text{ s}^{-3})^{-4}$ $k = 22.6 \text{ N m}^{-1}$		
			(3)
(b)	Limit of proportionality exceeded. Or Extension no longer proportional to force. ()	(1)	
	Range of Hooke's Law exceeded. Or Hooke's Law no longer applies.	(1)	(2)