Forces and Moments - Mark Scheme # Q1. | Question
Number | Answer | | Mark | |--------------------|---|-----|------| | (a) | • Use of $\Sigma F = 0$, seen or implied | (1) | | | | • F = 11 N | (1) | | | | • Use of moment of force = Fx (with any corresponding force and | | | | | known distance from an end, A or midpoint) | (1) | | | | Use of the principle of moments | (1) | | | | • r = 0.86 m | (1) | 5 | | (b) | Example of calculation $F_A + F_B = 8.5 \text{ N} + 14 \text{ N} = 22.5 \text{ N}$ $F_A = F_B$ $2F = 22.5 \text{ N}$ $F = 11.25 \text{ N}$ if moments taken from the left end $(11.25 \text{ N} \times 0.15 \text{ m}) + (11.25 \text{ N} \times x) = (8.5 \text{ N} \times 0.35 \text{ m}) + (14 \text{ N} \times 0.60 \text{ m})$ $x = 0.861 \text{ m}$ if moments taken from midpoint $(11.25 \text{ N} \times 0.45 \text{ m}) = (11.25 \text{ N} \times x) + (8.5 \text{ N} \times 0.25 \text{ m})$ $x = 0.261 \text{ m}$ so distance $= 0.261 \text{ m} + 0.6 \text{ m} = 0.861 \text{ m}$ if moments taken from A $(8.5 \text{ N} \times 0.20 \text{ m}) + (14 \text{ N} \times 0.45 \text{ m}) = (11.25 \text{ N} \times x)$ $x = 0.711 \text{ m}$ so distance $= 0.711 + 0.15 \text{ m} = 0.861 \text{ m}$ The moment (of B) must be the same | (1) | | | | For a smaller distance (from the left end of the shelf), the (normal | | | | | contact) force must increase | (1) | 2 | | | Total for question | | 7 | ### Q2. | Question | Answer | Mark | |----------|--|------| | Number | | | | | | | | | B is the correct answer | (1) | | | | | | | A is not correct as they are the units for force. | | | | C is not correct as they are the units for momentum. | | | | D is not correct as they are the units for power. | | | Question | Answer | | Mark | |----------|--|-----|------| | Number | | | | | (a) | Point at which weight is taken to act. | (1) | | | | | | (1) | | (b) | Gradient everywhere positive | (1) | | | | Stops at R = weight/W/mg at l/2 | (1) | | | | | (1) | | | | • Starts at $R = \frac{1}{2}$ weight/0.5W/0.5mg etc. R W $\frac{1}{2}W$ l | | | | | $\frac{l}{4}$ $\frac{l}{2}$ | | (3) | | (c) | Centre of gravity/mass is not above the shelf. Or Line of action of weight does not pass through the shelf. | (1) | | | | There is a net moment clockwise. Or No anticlockwise moment to balance moment of weight. | (1) | | | | | | (2) | | Question
Number | Answer | | Mark | |--------------------|---|-----|------| | (a) | Estimate of length of forearm 30 – 50 (cm) | (1) | | | | Use of trig to determine the perpendicular component of the tension Or see Tsin70 Or see Tcos20 | (1) | | | | Use of moment = Fx with a corresponding force and distance | (1) | | | | Use of the principle of moments | (1) | | | | Value for T in range 85 N to 150 N (l = 30 cm, T = 85 N and l = 50 cm, T = 150 N) | (1) | 5 | | | Example of calculation (for $l = 0.40 \text{ m}$) | | | | | $(0.04 \text{ m} \times T \times \sin 70) = (0.31 \text{ m} \times 4.5 \text{ N}) + (0.20 \text{ m} \times 15 \text{ N})$ | | | | | T = 117 N | | | | | 145 | | | | | 125 | | | | | F 115 | | | | | 105 | | | | | 95 | | | | | 30 35 40 45 50 | | | | | length of forearm / cm | | | | (b) | The forearm is not uniform/symmetrical | (1) | | | | The centre of gravity is not in the middle | (1) | 2 | | | Total for question | 7 | |-----|--|---| | | The centre of gravity is not in the middle | 2 | | (0) | The forearm is not uniform/symmetrical (1) | | | Question
Number | Answer | | Mark | |--------------------|---|-----|------| | (a) | Weight/W/mg labelled | (1) | | | | (Normal) reaction/contact force (accept R/N/C) | (1) | | | | Friction/F | (1) | | | | Lengths R <w and="" f<w<="" td=""><td>(1)</td><td>4</td></w> | (1) | 4 | | | (-1 off total for each additional arrowed line and MP4 conditional on MP1, 2 and 3) | | | | | (do not accept components of forces, even if both given and accept correct | | | | | direction/size by eye) | | | | | F R | | | | (b)(i) | Initially friction/drag negligible/small/less (as the velocity is low) | (1) | | | | See mgsinθ Or Wsinθ | (1) | | | | • $mg\sin\theta = ma$ and the masses cancel (so a independent of m) | (1) | 3 | | (b)(ii) | As velocity increases, air resistance increases | (1) | | | | Until frictional forces = component of weight down slope | (1) | | | | Resultant force = 0 and there is no more acceleration (at max velocity) | (1) | 3 | | | (MP2 allow frictional forces = $mg \sin \theta$) | | | | (b)(iii) | A larger person would have a greater area/volume | (1) | | | | The air resistance would be greater (accept drag) | (1) | 2 | | (c)(i) | See $\theta = \tan^{-1} 0.2$ and $\theta = 11.3^{\circ}$ | | | |---------|--|-----|----| | | Or see $\tan \theta = 0.2$ and $\theta = 11.3^{\circ}$ | (1) | 1 | | (c)(ii) | Either (Energy) | • | | | | Use of $E_k = \frac{1}{2} mv^2$ | (1) | | | | Use of trig to determine the component of weight along the slope or the vertical | | | | | height in terms of L | (1) | | | | Use of $E_{\text{grav}} = mg\Delta h$ (to determine E_{grav}) Or use of $W = F\Delta s$ | (1) | | | | Use of of $E_k = E_{zzw} + W$ (to determine | (1) | | | | L = 120 m | (1) | | | | | | | | | Or (forces) | | | | | Use of trig to determine the component of weight along the slope or the vertical | | | | | height in terms of L | (1) | | | | Use of resultant force = $mg\sin 11.3^{\circ} + 240 \text{ N}$ | (1) | | | | Use of $\Sigma F = ma$ to determine a | (1) | | | | Use of $v^2 = u^2 + 2as$ with their a (not 9.81) to determine s | (1) | | | | L = 120 m | (1) | 5 | | | Example of calculation | (-) | | | | $E_{\rm k} = \frac{1}{2} \times 95 \text{ kg} \times (33 \text{ m s}^{-1})^2 = 51728 \text{ J}$ | | | | | $51728 \text{ J} = (95 \text{ kg} \times 9.81 \text{ N kg}^{-1} \times \sin 11.3^{\circ} \times L) + (240 \text{ N} \times L)$ | | | | | L = 122 m | | | | | Total for question | • | 18 | # Q6. | Question | Answer | Mark | |----------|--|------| | Number | | | | | B is the correct answer | | | | A is not the correct answer as force per unit length has no meaning. | | | | C is not the correct answer as this is the gravitational force. D is not the correct answer as this is gravitational potential. | (1) | # Q7. | Question
Number | Answer | Mark | | |--------------------|---|------|---| | | D is the correct answer | | 1 | | | A is not the correct answer as the velocity is not constant at all times. B is not the correct answer as the velocity is still not constant at all times. C is not the correct answer as the air resistance does not act in the opposite direction to | | | | | gravity when an object travels upwards. | (1) | | # Q8. | Question
Number | Answer | Mark | |--------------------|---|------| | | C is the correct answer | (1) | | | A is not correct as it ignores the weight of the table.
B is a correct equation since $R_c=W_c$, but it is not an instance of the | | | | third law. D is a correct equation but it is not an instance of the third law. | | ### Q9. | Question | Answer | Mark | |----------|---|------| | Number | | | | | | | | | C is the correct answer | (1) | | | | | | | This is because W_c should have been drawn in the centre of the cube. | | | (a)(i) Explanation • Terminal velocity is the constant/maximum velocity the rain reaches Or terminal velocity is the velocity when acceleration = 0 • When weight = Drag (+ upthrust) Or when forces is equilibrium Or when resultant force = 0 | Question
Number | Answer | | Mark | |--|--------------------|--|-----|------| | (accept when the total upward force = total downward force) Diagram • Weight and air resistance (and upthrust) only drawn with correct directions (arrowed lines must touch dot, and labels included) • Arrow lengths of weight and air resistance same length (if upthrust drawn, upthrust line + drag line = weight line) (MP4 dependent on MP3) Air resistance/F/D Weight/W/mg | | Terminal velocity is the constant/maximum velocity the rain reaches Or terminal velocity is the velocity when acceleration = 0 When weight = Drag (+ upthrust) Or when forces is equilibrium Or when resultant force = 0 (accept when the total upward force = total downward force) Diagram Weight and air resistance (and upthrust) only drawn with correct directions (arrowed lines must touch dot, and labels included) Arrow lengths of weight and air resistance same length (if upthrust drawn, upthrust line + drag line = weight line) (MP4 dependent on MP3) Air resistance/F/D | (1) | 4 | | (a)(ii) | • Use of $A = \pi r^2$ and $V = \frac{4}{3} \pi r^3$ | 1) | | |---------|---|----|---| | | • Use of $\rho = \frac{m}{v}$ and $W = mg$ | 1) | | | | • Use of $W = F$ | 1) | | | | • $v = 6.5 - 7.0 \text{ m s}^{-1}$ | 1) | 4 | | | Example of calculation $A = \pi \times (0.002)^2 = 1.26 \times 10^{-5} \text{m}^2$ | | | | | $V = \frac{4}{3} \pi \times (0.002 \text{ m})^3 = 3.35 \times 10^{-8} \text{ m}^3$ | | | | | $m = 1000 \text{ kg m}^{-3} \times 3.35 \times 10^{-8} \text{ m}^3 = 3.35 \times 10^{-5} \text{ kg}$ | | | | | $W = 3.35 \times 10^{-5} \text{ kg} \times 9.81 \text{ N kg}^{-1} = 3.29 \times 10^{-4} \text{ N}$ | | | | | $3.29 \times 10^{-4} \text{ N} = 0.45 \times 1.2 \text{ kg m}^{-3} \times 1.26 \times 10^{-5} \text{ m}^2 \times v^2$ | | | | | $3.29 \times 10^{-4} \mathrm{N} = 6.80 \times 10^{-6} \times v^2$ | | | | | $v = 6.96 \text{ m s}^{-1}$ | | | | (b)(i) | Vertical displacement increasing | (1) | | |---------|---|-----|----| | | Horizontal displacement constant (same as first two drops) | (1) | 2 | | | (Mark all added drops but there must be a minimum of 2 additional drops to award MP1 &2) | | | | | | | | | | • | | | | | • | | | | (b)(ii) | • Use of $s = ut + \frac{1}{2} at^2$ with $u = 0$
(accept use of $t = 0.2$ s, 0.25 s, 0.75 s, 1.0 s) | (1) | | | | See 0.8 s for the time since the drop left the leaf | (1) | | | | • $s = 3.1 \text{ m}$ | (1) | 3 | | | Example of calculation
$s = \frac{1}{2} \times 9.81 \text{ N kg}^{-1} \times (0.8 \text{ s})^2 = 3.14 \text{ m}$ | | | | | Total for question | | 13 |