M1. A

[1]

M2. C

[1]

M3. B

[1]

M4. C

[1]

M5. C

[1]

M6. (a)
$$\Phi (= BA) = 45 \times 10^{-3} \times \pi \times (70 \times 10^{-3})^2$$
 (1) $= 6.9 \times 10^{-4}$ Wb (1) $(6.93 \times 10^{-4}$ Wb)

2

(b) (i)
$$N\Delta \Phi = (NBA - 0) = 850 \times 6.93 \times 10^{-4}$$
 (1)
= 0.59 (Wb turns) (1) (0.589 (Wb turns))
(if $\Phi = 6.9 \times 10^{-4}$, then 0.587 (Wb turns))
(allow C.E. for value of Φ from (a))

(ii) induced emf (=
$$N \frac{\Delta \Phi}{\Delta t}$$
) = $\frac{0.589}{0.12}$ (1) = 4.9 V (1) (4.91 V)

(allow C.E. for value of Wb turns from (ii)

[6]

M7. (a) deflects one way (1) then the other way (1)

2

- (b) (i) acceleration is less than *g* [or reduced] **(1)** suitable argument **(1)** (e.g. correct use of Lenz's law)
 - (ii) acceleration is less than *g* [or reduced] (1) suitable argument (1) (e.g. correct use of Lenz's law)

4

(c) magnet now falls at acceleration g (1) emf induced (1) but no current (1) no energy lost from circuit (1) [or no opposing force on magnet, or no force from magnetic field or no magnetic field produced]

OWC 2

[9]

M8. (a) greater flux (linkage) or more flux lines (at same distance) [or stronger magnet produces flux lines closer together] (1) greater rate of change of flux (linkage) [or more flux lines cut per unit time] (1) emf

rate of change of flux (linkage) (1)

[or using $\in = N \frac{\Delta \phi}{\Delta t}$, where $\Delta \Phi = A \Delta B$, v and Δt are the same (1)

 ΔB is larger since magnet is stronger (1) N and A are constant, $\dot{x} \in \text{is larger (1)}$

3

(b) (i) area swept out, $\Delta A = lv\Delta t$ (1)

$$\Delta \Phi (= B\Delta A) = Blv \Delta t$$
 (1)

(c) (i)
$$W(=2\pi f) = 2\pi \times 16$$
 (1) = 101 rads⁻¹ (1)

(ii)
$$v(=rw) = 32 \times 10^{-3} \times 101 = 3.2(3) \text{ms}^{-1}$$
 (1) (allow C.E. for value of w from (i))

(iii)
$$\in (=Blv) = 28 \times 10^{-3} \times 64 \times 10^{-3} \times 3.23$$
 (1)
= 5.7(9) $\times 10^{-3} \text{V}$ (1)
(allow C.E. for values of v from (ii))
(solutions using $\in Bf\pi r^2$ to give 5.7(6) $\times 10^{-3} \text{ V}$ acceptable)

[11]

5