AC

(b) Fig. 6.4 is the circuit of a bridge rectifier.

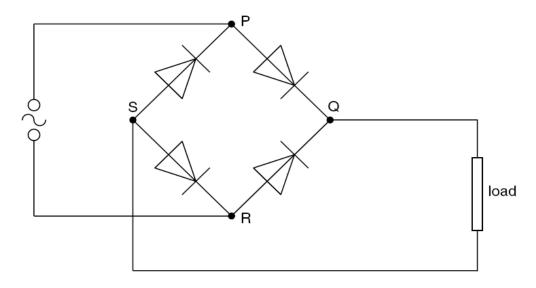



Fig. 6.4

An alternating supply connected across PR has an output of 6.0 V r.m.s.

- (i) On Fig. 6.4, circle those diodes that are conducting when R is positive with respect to P. [1]
- (ii) Calculate the maximum potential difference between points Q and S, assuming that the diodes are ideal.

Nov 03

4 The rectified output of a sinusoidal signal generator is connected across a resistor **R** of resistance  $1.5 \,\mathrm{k}\Omega$ , as shown in Fig. 4.1.



Fig. 4.1

The variation with time t of the potential difference V across R is shown in Fig. 4.2.

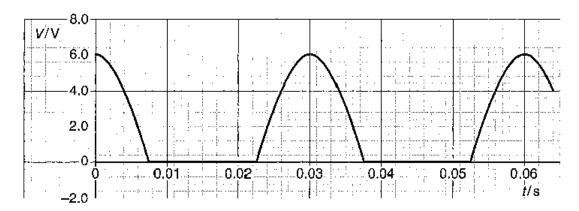



Fig. 4.2

| (a) | State how the rectification shown in Fig. 4.2 may be achieved. |  |  |  |  |  |
|-----|----------------------------------------------------------------|--|--|--|--|--|
|     |                                                                |  |  |  |  |  |
|     | [2]                                                            |  |  |  |  |  |

**(b)** A capacitor is now connected in parallel with the resistor **R**. The resulting variation with time *t* of the potential difference *V* across **R** is shown in Fig. 4.3.

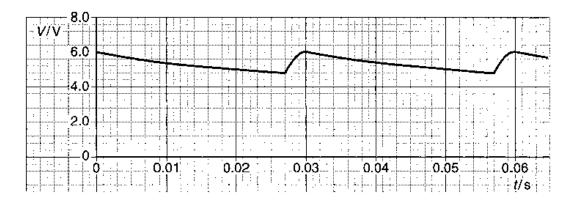



Fig. 4.3

- (i) Using Fig. 4.3, determine
  - 1. the mean potential difference across the resistor R,

2. the mean current in the resistor,

3. the time in each cycle during which the capacitor discharges through the resistor.

|     | (H) | (ii) Using your answers in (i), calculate |                                                                                |  |  |
|-----|-----|-------------------------------------------|--------------------------------------------------------------------------------|--|--|
|     |     | 1.                                        | the charge passing through the resistor during one discharge of the capacitor, |  |  |
|     |     | 2.                                        | charge =                                                                       |  |  |
| (c) | cap | acito                                     | capacitance =                                                                  |  |  |

| May<br><b>5</b> | 04<br>(a) | Explain, in terms of heating effect, what is meant by the <i>root-mean-square</i> ( <i>r.m.s.</i> ) value of an alternating current. |                                                                                                                                                                  |  |  |  |  |
|-----------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                 |           |                                                                                                                                      |                                                                                                                                                                  |  |  |  |  |
|                 |           |                                                                                                                                      |                                                                                                                                                                  |  |  |  |  |
|                 |           |                                                                                                                                      | [2]                                                                                                                                                              |  |  |  |  |
|                 | (b)       | State the relation between the peak current $I_{\rm 0}$ and the r.m.s. current $I_{\rm rms}$ of a sinusoidally-varying current.      |                                                                                                                                                                  |  |  |  |  |
|                 |           |                                                                                                                                      | [1]                                                                                                                                                              |  |  |  |  |
|                 | (c)       | The value of a direct current and the peak value of a sinusoidal alternating current are equal.                                      |                                                                                                                                                                  |  |  |  |  |
|                 |           | (i)                                                                                                                                  | Determine the ratio                                                                                                                                              |  |  |  |  |
|                 |           |                                                                                                                                      | power dissipation in a resistor of resistance $\it R$ by the direct current power dissipation in the resistor of resistance $\it R$ by the alternating current . |  |  |  |  |
|                 |           |                                                                                                                                      |                                                                                                                                                                  |  |  |  |  |
|                 |           |                                                                                                                                      | ratio =[2]                                                                                                                                                       |  |  |  |  |
|                 |           | (ii)                                                                                                                                 | State one advantage and one disadvantage of the use of alternating rather than direct current in the home.                                                       |  |  |  |  |
|                 |           |                                                                                                                                      | advantage                                                                                                                                                        |  |  |  |  |
|                 |           |                                                                                                                                      |                                                                                                                                                                  |  |  |  |  |
|                 |           |                                                                                                                                      | disadvantage                                                                                                                                                     |  |  |  |  |
|                 |           |                                                                                                                                      | [2]                                                                                                                                                              |  |  |  |  |

(d) A current I varies with time t as shown in Fig. 5.1.

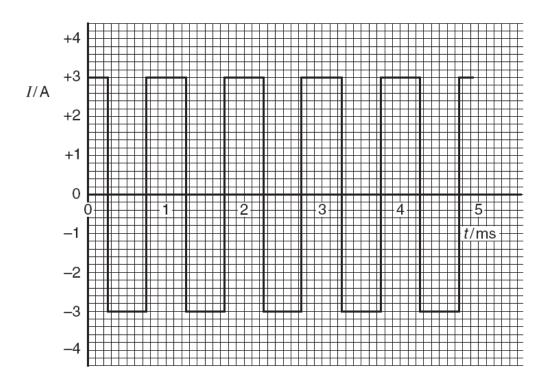



Fig. 5.1

For this varying current, state

(i) the peak value,

(ii) the r.m.s. value.

Nov 06

6 An alternating supply of frequency 50 Hz and having an output of 6.0 V r.m.s. is to be rectified so as to provide direct current for a resistor R. The circuit of Fig. 6.1 is used.

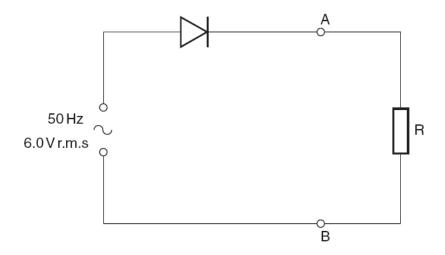



Fig. 6.1

The diode is ideal. The Y-plates of a cathode-ray oscilloscope (c.r.o.) are connected between points A and B.

(a) (i) Calculate the maximum potential difference across the diode during one cycle.

|      | potential difference =V [2                                                                                                        | 2] |
|------|-----------------------------------------------------------------------------------------------------------------------------------|----|
| (ii) | State the potential difference across R when the diode has maximum potential difference across it. Give a reason for your answer. | al |
|      | ra                                                                                                                                |    |

[3]

(b) The Y-plate sensitivity of the c.r.o. is set at 2.0 V cm<sup>-1</sup> and the time-base at 5.0 ms cm<sup>-1</sup>.

On Fig. 6.2, draw the waveform that is seen on the screen of the c.r.o.

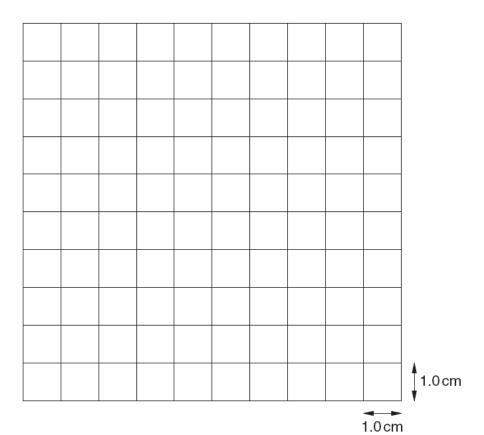



Fig. 6.2

(c) A capacitor of capacitance  $180\,\mu\text{F}$  is connected into the circuit to provide smoothing of the potential difference across the resistor R.

| (i) | On Fig. 6.1, show the | position of the capacitor in the circuit. | [1] |
|-----|-----------------------|-------------------------------------------|-----|

(ii) Calculate the energy stored in the fully-charged capacitor.

| (iii) | During discharge, the potential difference across the capacitor falls to 0.43 $V_0$ , where $V_0$ is the maximum potential difference across the capacitor. |  |  |  |  |  |  |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|       | Calculate the fraction of the total energy that remains in the capacitor after the discharge.                                                               |  |  |  |  |  |  |
|       |                                                                                                                                                             |  |  |  |  |  |  |
|       |                                                                                                                                                             |  |  |  |  |  |  |
|       |                                                                                                                                                             |  |  |  |  |  |  |
|       |                                                                                                                                                             |  |  |  |  |  |  |
|       |                                                                                                                                                             |  |  |  |  |  |  |
|       | fraction =[2]                                                                                                                                               |  |  |  |  |  |  |
|       |                                                                                                                                                             |  |  |  |  |  |  |
|       |                                                                                                                                                             |  |  |  |  |  |  |

## May 07

- 4 An ideal transformer has 5000 turns on its primary coil. It is to be used to convert a mains supply of 230 V r.m.s. to an alternating voltage having a peak value of 9.0 V.
  - (a) Calculate the number of turns on the secondary coil.

| number | = | <br>[3 | 1 |
|--------|---|--------|---|
|        |   | <br>_  |   |

**(b)** The output from the transformer is to be full-wave rectified. Fig. 4.1 shows part of the rectifier circuit.

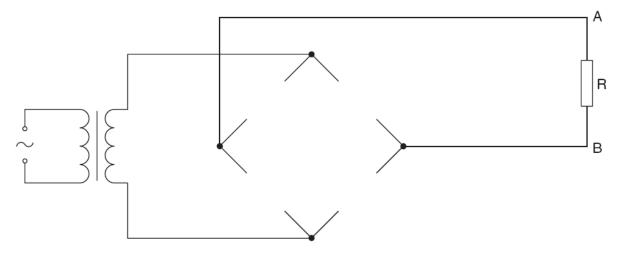



Fig. 4.1

On Fig. 4.1, draw

- (i) diode symbols to complete the diagram of the rectifier such that terminal A of the resistor R is positive with respect to terminal B, [2]
- (ii) the symbol for a capacitor connected to provide smoothing of the potential difference across the resistor R. [1]

(c) Fig. 4.2 shows the variation with time *t* of the smoothed potential difference *V* across the resistor R.

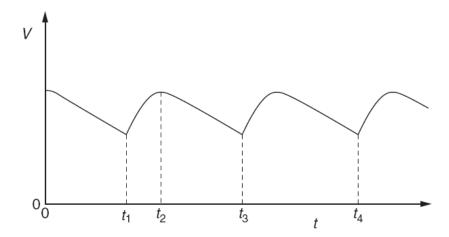



Fig. 4.2

(i) State the interval of time during which the capacitor is being charged from the transformer.

| from time | <br>to time | <br>[1 | 1 |
|-----------|-------------|--------|---|
|           |             |        |   |

(ii) The resistance of the resistor R is doubled. On Fig. 4.2, sketch the variation with time *t* of the potential difference *V* across the resistor. [2]