Q1.

4	(a)			e.g. both transverse/longitudinal/same type meet at a point, same direction of polarisation, etc1 each, max 3(allow 1 mark for any condition for observable interference)	В3	[3]	
	(b)	((i)1	allow 0.3 mm → 3 mm	B1		
		(i)2	$\lambda = ax/D$ (allow any subject)	B1		
		(ii)1	separation increasedless bright			
		(ii)2	separation increasedless bright			
		((ii)3	separation unchangedfringes brighterfurther detail, i.e quantitive aspect in (ii)1 or (ii)2(in (b), do not allow e.c.f. from (b)(i)2)	B1	[7]	
Q2.							
	2	(a)	(i) (ii)		IUlai	B1 C1 A1	[3]
	9	(b)		amplitude shown as greater than a but less than 2a and constant correct phase (wave to be at least three half-periods, otherwise -1 overall)		B1 B1	[2]
					Total		[5]
Q3.							
6	(a)			When two (or more) waves meet (not 'superpose' or 'interfere') resultant displacement is the sum of individual (displacements)		B1 M1 A1	[3]
	(b)	200	0.700	any correct line through points of intersection of crests any correct line through intersections of a crest and a trough		B1 B1	[2]
	(c)	(i)	$\lambda = ax/D$ OR $\lambda = a\sin \theta$ and $\theta = x/D$ 650 x 10 ⁻⁹ = $(a \times 0.70 \times 10^{-3})/1.2$ $a = 1.1 \times 10^{-3}$ m		C1 C1 A1	[3]
		(ii) 1 2	no change brighter no change (accept stay/remain dark)	Total	B1 B1 B1	[3] [11]

Q4.

5		(a)	or an obstacle/slit/gap	М1	
			Wave 'bends' into the geometrical shadow/changes direction/spreads	A1	[2]
		(b) (i)	$d = 1/(750 \times 10^{3})$ = 1.33 × 10 ⁻⁶ m	C1 A1	[2]
		(ii)	$1.33 \times 10^{-6} \times \sin 90^{\circ} = n \times 590 \times 10^{-9}$ n = 2 (must be an integer)	C1 A1	[2]
		(iii) formula assumes no path difference of light before entering grating or there is a path difference before the grating	B1	[1]
		(c)	e.g. lines further apart in second order lines fainter in second order (allow any sensible difference: 1 each, max 2) (if differences stated but without reference to the orders, max	B2 x 1 mark)	[2]
Q5.					
6	(a)	(i) con	rect shape drawn	B1	[1]
		(ii) two	nodes marked correctly	B1	[1]
	(b)	$\frac{1}{2}\lambda = 0.3$ $v = f\lambda$ $= 51$	324 m 2 × 2 × 0.324	C1 C1	
			2 m s ⁻¹	A1	[3]
	(c)	$1/4\lambda = 16$	i.2 cm ntinode is 0.5 cm above top of tube	C1	
			ode is 16.2 cm above water surface	A1	[2]

Q6.

(a)	(i)	vibrations (in plane) no	ormal to direction of energy propagation	B1		[1]
	(ii)	vibrations in <u>one</u> direct	ion (normal to direction of propagation)	B1		[1]
(b)	(i)	maximum amplitude (o at (displacement) nod zero/minimum	of vibration) es/where there are heaps, amplitude of vibration is	B1		[3]
	(ii)	$v = f\lambda$	10 ⁻²	C1 C1		
		= 334 m s ⁻¹ (allow s	330, not 340)	A 1		[3]
(c)		하는 사람은 보다 하는 물을 하면 하는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다.	그 방송 선생님이 가게 하는 일을 다 먹는 살아진 아니라 내려가 하는 것이 되었다. 그 아내는 그 아내는 아니라 아니라 아니라 아니라 아니라 아니라 아니다.	В1		
	or	two waves of same	(type and) frequency travelling in opposite directions	B1 B1		[3]
(a	i) (i)				M1 A1	[2]
	(ii)	speed: speed a	t which energy is transferred / speed of wavefront		В1	[1]
(b) (i)	does not transfer ene	ergy (along the wave)		В1	[1]
	(ii)	position (along wave)	where amplitude of vibration is a maximum		В1	[1]
	(iii)	all three positions ma	rked		В1	[1]
(0	v	$= f\lambda$	= 35.6 cm		C1 C1	
		$= 44.5 \text{ m s}^{-1}$			C1	
					C1 A1	[5]
(a)	or p	ath difference (betwee	en waves from S_1 and S_2) is $\frac{1}{2}\lambda/(n+\frac{1}{2})\lambda$. B1			
						[2
(b)	wav min	elength changes from mum when λ = (56 cm	n,) 18.7 cm, 11.2 cm, (8.0 cm)			[4
	(b) (c) (a)	(ii) (b) (i) (c) Statile itheory special speci	 (ii) vibrations in one direct (b) (i) at (displacement) and maximum amplitude (of at (displacement) nod zero/minimum dust is pushed to / sett (ii) 2.5λ = 39 cm v = fλ v = 2.14 × 10³ × 15.6 × = 334 m s⁻¹ (allow so the set of t	 (b) (i) at (displacement) antinodes / where there are no heaps, wave has maximum amplitude (of vibration) at (displacement) nodes/where there are heaps, amplitude of vibration is zero/minimum dust is pushed to / settles at (displacement) nodes (ii) 2.5λ = 39 cm v = fλ v = 2.14 × 10³ × 15.6 × 10² = 334 m s¹ (allow 330, not 340) (c) Stationary wave formed by interference / superposition / overlap of either wave travelling down tube and its reflection or two waves of same (type and) frequency travelling in opposite directions speed is the speed of the incident / reflected waves (a) (i) frequency: number of oscillations per unit time of the source / of a point on the wave (ii) speed: speed at which energy is transferred / speed of wavefront (b) (i) does not transfer energy (along the wave) (ii) position (along wave) where amplitude of vibration is a maximum (iii) all three positions marked (c) wavelength = 2 × 17.8 = 35.6 cm v = fλ v = fλ v = f25 × 0.356 = 44.5 m s⁻¹ 44.5² = 4.00 / m m = 2.0 × 10⁻³ kg m⁻¹ (a) either phase difference is π rad / 180° or path difference (between waves from S₁ and S₂) is ½λ / (n + ½)λ . B1 either same amplitude / intensity at M or ratio of amplitudes is 1.28 / ratio of intensities is 1.28²	 (ii) vibrations in one direction (normal to direction of propagation) B1 (b) (i) at (displacement) antinodes / where there are no heaps, wave has maximum amplitude (of vibration) at (displacement) nodes/where there are heaps, amplitude of vibration is zero/minimum dust is pushed to / settles at (displacement) nodes (ii) 2.5λ = 39 cm	 (ii) vibrations in one direction (normal to direction of propagation) B1 (b) (i) at (displacement) antinodes / where there are no heaps, wave has maximum amplitude (of vibration) at (displacement) nodes/where there are heaps, amplitude of vibration is zero/minimum dust is pushed to / settles at (displacement) nodes (ii) 2.5λ = 39 cm

Q9.

5	(a)	constant phase difference	B1	[1]
	(b)	allow wavelength estimate 750 nm \rightarrow 550 nm separation = $\lambda D / x$ = $(650 \times 10^{-9} \times 2.4) / (0.86 \times 10^{-3})$ = 1.8 mm (allow 2 marks from inappropriate estimate if answer is in range $10 \mathrm{cm} \rightarrow 0.1 \mathrm{mm}$)		[3]
	(c)	no longer complete destructive interference / amplitudes no longer completely cancel so dark fringes are lighter	M1 A1	[2]
Q10.				
4	(a)	when a <u>wave</u> (front) passes by/incident on an edge/slit wave bends/spreads (into the geometrical shadow)		[2]
	(b)	$\tan \theta = \frac{38}{165}$ $\theta = 13^{\circ}$ $d \sin \theta = n\lambda$ $d = 2.82 \times 10^{-6}$ number = $(1/d =) 3.6 \times 10^{5}$	C1	[4]
	(c)	P remains in same position X and Y rotate through 90°		[2]
	(d)	either screen not parallel to grating or grating not normal to (incident) light	. B1	[1]
Q11.				
4	(a)	e.g. no energy transfer amplitude varies along its length/nodes <u>and</u> antinodes neighbouring points (in inter-nodal loop) vibrate in phase, etc. (any two, 1 mark each to max 2	2	[2]

	(b)	(i)	$\lambda = (330 \times 10^2)/550$	M1	
			$\lambda = 60 \text{ cm}$	A0	[1]
		(ii)	node labelled at piston	В1	
			antinode labelled at open end of tube	B1	
			additional node and antinode in correct positions along tube	B1	[3]
	(c)		owest frequency, length = λ/4	C1	
			1.8 m		
			juency = 330/1.8 30Hz	C1 A1	[3]
Q12.					
Q IZ.					
5	(a) (i	1 number of oscillations per unit time (not per second)	B1	[1]
	•		2 <i>n</i> λ	A1	[1]
		(ii	$v = \text{distance / time} = n\lambda/t$	M1	
			$n/t = f$ hence $v = f\lambda$	A1	
			or f oscillations per unit time so $f\lambda$ is distance per unit time	M1	
			distance per unit time is v so $v = f\lambda$	A1	[2]
	(b) (i	1.0 period is 3 × 2 = 6.0 ms	C1	
			frequency = $1/(6 \times 10^{-3}) = 170 \text{Hz}$	A1	[2]
		(ii) wave (with approx. same amplitude and) with correct phase difference	В1	[1]
Q13.					
7	(a)		en waves overlap / meet, (resultant) displacement is the sum of the individ placements	lual B1	[1]
	(b)	(i)	two (ball-type) dippers connected to the same vibrating source /motor	(M1) (A1)	
			or	(,,,,	
			one wave source described with two slits	(M1) (A1)	[2]
		(ii)	lamp with viewing screen on opposite side of tank	В1	
			means of freezing picture e.g. strobe	B1	[2]
	(c)	(i)	two correct lines labelled X	В1	[1]
		(ii)	correct line labelled N	B1	[1]

Q14.

6	(a)	(i)	to produce coherent sources or constant phase difference	B1	[1]	
		(ii)	1. 360° / 2π rad allow n × 360° or n × 2π (unit missing –1) 2. 180° / π rad allow (n × 360°) – 180° or (n × 2π) – π	B1 B1	[1] [1]	
		(iii)	waves overlap / meet (resultant) displacement is sum of displacements of each wave at P crest on trough (OWTTE)	B1 B1 B1	[2] [1]	
	(b)		= ax / D = $2 \times 2.3 \times 10^{-3} \times 0.25 \times 10^{-3} / 1.8$ = 639 nm	C1 C1 A1	[3]	
Q15.	•					
6	(a)	(i)	amplitude = 7.6 mm allow 7.5 mm	A1	[1]	
		(ii)	180° / π <u>rad</u>	A1	[1]	
		(iii)	$v = f \times \lambda$ = 15 × 0.8 = 12 m s ⁻¹	C1 A1		
	(b)		rrect sketch with peak moved to the right rve moved by the correct phase angle / time period of 0.25 ${\cal T}$	B1 B1		
	(c)	(i)	zero (rad)	A1	[1]	
		(ii)	antinode maximum amplitude, node zero amplitude / displacement	A1	[1]	
	(iii)	3		A1	[1]	
	(iv)	hor	izontal line through central section of wave	B1	[1]	
Q16.						
6	(a)	(i)	coherence: constant phase difference between (two) waves	M1 A1	[2]	
		(ii)	path difference is either λ or $n\lambda$ or phase difference is 360° or $n \times 360$ ° or $n2\pi$ rad	В1	[1]	

	(iii)	path difference is either $\lambda/2$ or $(n + \frac{1}{2}) \lambda$ or phase difference is odd multiple of either 180° or π rad	В1	É	[1]
	(iv)	$w = \lambda D/a$	C1		
			= $[630 \times 10^{-9} \times 1.5] / 0.45 \times 10^{-3}$ = 2.1×10^{-3} m	C1 A1	į.	[3]
	(b)	no.	change to <u>dark</u> fringes	В1	à	
	(U)	no (change to <u>dark</u> fringes change to separation/fringe width <u>ht</u> fringes are brighter/lighter/more intense	B1 B1	l	[3]
Q17	•					
6	(a)		o waves travelling (along the same line) in opposite directions overlap/meet me frequency / wavelength	M1 A1		
			sultant displacement is the sum of displacements of each wave / oduces nodes and antinodes	В1		[3]
	(b)	ad	paratus: source of sound + detector + reflection system justment to apparatus to set up standing waves – how recognised easurements made to obtain wavelength	B1 B1 B1		[3]
	(c)	(i)	at least two nodes and two antinodes	A1		[1]
		(ii)	node to node = λ / 2 = 34 cm (allow 33 to 35 cm) $c = f\lambda$ f = 340 / 0.68 = 500 (490 to 520) Hz	C1 C1 A1		[3]
Q18						
6	i (a	i) (i	 diffraction bending/spreading of light at edge/slit this occurs at each slit 		B1 B1	[2]
		(ii	constant phase difference between each of the waves		В1	[1]
		(iii	 (when the waves meet) the resultant displacement is the sum of displacements of each wave 	the	В1	[1]
	(b		$\sin \theta = n\lambda$ = $d / \lambda = 1 / 450 \times 103 \times 630 \times 10^{-9}$		C1	
		n	= 3.52 ence number of orders = 3		M1 A1	[3]
	(0	(A)	blue is less than λ red nore orders seen		M1 A1	
		е	ach order is at a smaller angle than for the equivalent red		A1	[3]

Q19.

5	(a)	coh pat	ves overlap / meet / superpose herence / constant λ or frequency) herence / constant phase difference (not constant λ or frequency) h difference = 0, 2π , 4π me direction of polarisation/unpolarised	(B1) (B1) (B1) (B1) max. 3		
	(b)	f = λ =	v/f $12 \times 10^9 \text{ Hz}$ $3 \times 10^8 / 12 \times 10^9$ (any subject) 0.025 m	C1 C1 M1 A0	[3]	
	(c)	sev 5 m	ximum at P <u>veral</u> minima or maxima between O and P naxima / 6 minima between O and P 7 maxima / 6 minima including O and P	B1 B1 B1		
	(d)	slits slits (r Allo	B1 B1	[2]		
Q20. 5	(a)	100000	$v = f\lambda$ $\lambda = 40 / 50 = 0.8(0)$ m waves (travel along string and) reflect at Q / wall / fixed end incident and reflected waves interfere / superpose	C1 A1 B1 B1	[2] [2]	
	(b)	(i)	nodes labelled at P, Q and the two points at zero displacement antinodes labelled at the three points of maximum displacement	B1 B1	[2]	
		(ii)	$(1.5\lambda \text{ for PQ hence PQ} = 0.8 \times 1.5) = 1.2 \text{ m}$	A 1	[1]	
		(iii)	T = 1 / f = 1/50 = 20 ms 5 ms is ½ of cycle horizontal line through PQ drawn on Fig. 5.2	C1 A1 B1	[3]	

Q21.

5	(a)		n waves overlap / meet resultant displacement is the sum of the individual displacements of the waves	B1 B1	[2]
	(b)	(i)	1. phase difference = 180° / (n + ½) 360° (allow in rad)	В1	[1]
			2. phase difference = 0 / 360 ° / (n360 °) (allow in rad)	В1	[1]
		(ii)	$v = f\lambda$ $\lambda = 320 / 400 = 0.80 \text{ m}$	C1 A1	[2]
		(iii)	path difference = $7 - 5 = 2$ (m) = 2.5λ hence minimum	М1	
			or maximum if phase change at P is suggested	A 1	[2]
Q22	•				
5	5 (a)	displacement & direction of energy travel normal to one another B1	[1]	
	(b) (i)	phase angle of 60° correct (need to see $1\frac{1}{2}$ wavelengths) B1 lags behind T_1 B1	[2]	
		(ii)	waves must be in same place (at same time)	[2]	
		(iii)	1 ½A	[3]	
Q23					
4	(a)	(i)1	amplitude = 0.4(0) mm		
		(i)2	wavelength = 7.5 x 10 ⁻² m (1 sig. fig1 unless already penalised)		
		(i)3	period = 0.225 ms		
		(i)4	$v = f\lambda$ = 4400 x 7.5 x 10 ⁻²		[6]

(a)	(ii)	reasonable shape, same amplitude and wavelength double	ed B1		[1]
(b)	(i)	1.7(2) µm	A1		
		(ii)	d sin2 = $n\lambda$ (double slit formula scores 0/2) 1.72 x 10 ⁻⁶ x sin 2 = 590 x 10 ⁻⁹			
		(iii)	½L = 1.5 tan20.1 L = 1.1 m			[5]
Q24.						
2	(a)	all sam	e speed in a vacuum (allow medium)/all travel in a vacuum	(1)		
		transve	erse/can be polarised	(1)		
		underg	(1)			
		can be	reflected/refracted	(1)		
		show p	properties of particles	(1)		
		oscillat	ing electric and magnetic fields	(1)		
		transfe	r energy/progressive	(1)		
		not affe	ected by electric and magnetic fields	(1)		
		(allow	any three, 1 each)		В3	[3]
	(b)	495 nn	n = 495 x 10 ⁻⁹ m		C1	
		numbe	$r = 1/(495 \times 10^{-9}) = 2.02 \times 10^{6}$		A 1	[2]
		(allow	2 or more significant figures)			
	(c)	(i) allo	ow $10^{-7} \rightarrow 10^{-11} \text{ m}$		В1	
		(ii) allo	ow $10^{-3} \to 10^{-6} \text{ m}$		В1	[2]

Q25.

4	(a) wavelength = 1.50 m						
	(t	o) v =	= f λ			C1	
		sp	eed =	540 m s ⁻¹		A 1	[2]
	(0	c) (pr	ogres	sive) wave reflected at the (fixed) ends		В1	
		wa	ve is	formed by superposition of (two travelling) waves		В1	
							F21
		uni	s quai	ntity is the speed of the travelling wave		B1	[3]
Q26.							
5		(a)		similarity: e.g. same wavelength/frequency/period, constant phase difference	В1		
				difference: e.g. different amplitude/phase (do not allow a reference to phase for both similarity and difference)	В1	[2	1
		(b)		constant phase difference so coherent	В1	[1]
		(c)	(i)	intensity ∝ amplitude²	C1		
				$I \propto 3^2$ and $I_B \propto 2^2$ leading to	M1		
				$I_{\rm B} = \frac{4}{9}I$	Α0	[2]
			(ii)	resultant amplitude = 1.0 × 10 ⁻⁴ cm	C1		
				resultant intensity = $\frac{1}{9}I$	A 1	[2	1
		(d)	(i)	displacement = 0	В1	[1	1
			(ii)	$x_A = -2.6 \times 10^{-4}$ cm and $x_B = +1.7 \times 10^{-4}$ cm	C1		
				allow $\pm 0.5 \times 10^{-4}$ cm) resultant displacement = (-) 0.9×10^{-4} cm	A1	[2]
Q27.							
	4	(a)	(i)	when two (or more) waves meet (at a point) there is a change in overall intensity / displacement		M1 A1	
			(ii)	constant phase difference (between waves)		В1	[3]
		(b)	(i)	$d\sin\theta = n\lambda$ (10 ⁻³ / 550) $\sin 90 = n \times 644 \times 10^{-9}$ n = 2.8 so two orders		B1 C1 C1 A1	[4]
			(ii)	(power-of-ten error giving 2800 orders, allow 1/3 only for calculation of 1. $d\sin\theta = n\lambda$ (either here or in (i) – not both)	n)		
			- 1-1-10 - 1 -1	$\underline{\theta}$ is greater so λ is greater 2. when n is larger, $\Delta \theta$ is larger		B1 M1	[1]
				so greater in second order		A1	[2]

Q28.

5	(a)	amplitude between 6.5 squares and 7.5 squares on 3 peaks (allow 1 mark if outside this range but between 6.0 and 8.0 squares) correct phase (ignore lead/lag, look at x-axis only and allow ±½ square						
	(b) $\lambda = ax / D$ $540 \times 10^{-9} = (0.700 \times 10^{-3} x) / 2.75$ x = 2.12 mm		T ³ x) / 2.75	C1 C1 A1	[3]			
	(c)	(c) (i) same separation bright areas brighter (В1			
			(allow 'contrast greater' for 1 mark if dark/light areas not discussed) fewer fringes observed (1) any two, 1 each					
			smaller separation on change in bright		B1 B1	[2]		
Q29.								
6	(a	be		edge / aperture / slit /(edge of) obstacle of wave (into geometrical shadow) og at a boundary)	M A1	2	[2]	
	(b) (i)	apparatus e.g.	laser & slit / point source & slit / lamp and slit & slit microwave source & slit water / ripple tank, source & barrier	B1	Ē		
			detector e.g.	screen aerial / microwave probe strobe / lamp	B1	22		
			what is observed		B1	E	[3]	
		(ii)	apparatus e.g. detector e.g. what is observed	loudspeaker, and slit / edge microphone & c.r.o. / ear	B1 B1 B1	Ē	[3]	

Q30.

5	(a)	tran	sfer / propagation of energyM1	
		as a	result of oscillations / vibrations	[2]
	(b)	(i)	displacement / velocity / acceleration (of particles in the wave)	[1]
			displacement etc. is normal to direction of energy transfer / travel of wave / propagation of wave(not 'wave motion')	[1]
	ı	G () () ()	displacement etc. along / same direction of energy transfer / travel of wave / propagation of wave(not 'wave motion')	[1]
	(c)	eith or d	action: suitable object, means of observation	
		light	rference: suitable object, means of observation and illumination	
		100000000000	nterference	[6]
			Пота	l: 11]
Q31.	,			
5	(a)	(i)	frequency fB1	[1]
		(ii)	amplitude AB1	[1]
	(b)	πra	ad or 180°(unit necessary)B1	[1]
	(c)	(i)	speed = $f \times L$	[1]
		(ii)	wave is reflected at end / at P	
			or two waves travelling in opposite directions interfere	[3]
			[Tot	al: 7]

Q32.

5	(a)			ve passes thi preads out / o			lge				M1 A1	[2]
	(b)	dia	gram:	wavelength wavefront fla		curving i	nto geom	etrical shad	low		M1 A1	[2]
	(c)	c) $d \sin \theta = n\lambda$ for $\theta = 90^{\circ}$ 1 / $(650 \times 10^{3}) = n \times 590 \times 10^{-9}$							C1			
		n=	2.6	orders is 2	U × 10						M1 A1	[3]
	(d)	inte	ensity / t	orightness de	ecreases (as	order inc	reases)				В1	[1]
Q33.												
5	(a)	(i)	distanc	e (of point or	n wave) fron	n rest / e	quilibrium	position			В1	[1]
	1	(ii)	or min	e moved by imum distand nt crests or to	ce between t						B1	[1]
	(b)	(i)	T = 0.6	60s							В1	[1]
		(ii)	$\lambda = 4.0$	cm							В1	[1]
	0	iii)	either 1 v = 6.7	$v = \lambda IT$ or $cm s^{-1}$	$v = f\lambda$ and	<u>f</u> = 1/T					C1 A1	[2]
	(c)	(i)		ide is decrea losing powe							M1 A1	[2]
		(ii)	intensi ratio = = 3.3	ty ~ (amplitu 2.0² / 1.1²	ude) ²						C1 C1 A1	[3]
Q34.												
3	adju mea freq (ass	ust c asur uen sum	c.r.o. to re length acy = 1 re b is m	whone / (terming produce steated of cycle / water / \(\lambda b\) we assured as some 'measure T,	ady wave of avelength λ s cm^{-1} , unle	1 (or 2) or and note	ycles / w time-bas wise state	avelengths se b ed)		i	B1 B1 M1 A1	[4]

Q35.

6	(a)		n two (or more) waves meet (at a point) Iltant) displacement is (vector) sum of individual displacements	B1 B1	[2]
	(b)		$\lambda = ax/D$ (if no formula given and substitution is incorrect then 0/3) $\delta = 30 \times 10^{-9} = (1.4 \times 10^{-3} \times x)/2.6$ $\delta = 1.1 \text{ mm}$	C1 C1 A1	[3]
		(ii) 1	1. 180° (allow π if rad stated)	A1	[1]
		2	2. at maximum, amplitude is 3.4 units and at minimum, 0.6 units intensity \sim amplitude ² allow $I \sim$ a ² ratio = 3.4 ² / 0.6 ²	C1 C1	
			= 32	A1	[3]
Q36.					
6	(a	0.51	ves overlap sultant) displacement is the sum of the displacements of each of the waves	B1 B1	[2]
			travelling in opposite directions overlap / incident and reflected waves		
			p superpose or interfere for overlap here) have the same speed and frequency	B1 B1	[2]
0	(c)		ne period = 4×0.1 (ms) = $1 / T = 1 / 4 \times 10^{-4} = 2500$ Hz	C1 A1	[2]
	(ii) 1.	the microphone is at an antinode and goes to a node and then an antinode / maximum amplitude at antinode and minimum amplitude at node	В1	[1]
		2.	$\lambda / 2 = 6.7 \text{ (cm)}$ $v = f\lambda$ $v = 2500 \times 13.4 \times 10^{-2} = 335 \text{ m s}^{-1}$	C1 C1 A1	[3]
			V = 2000 ^ 10.4 ^ 10 = 3001118	AT	S

incorrect $\boldsymbol{\lambda}$ then can only score second mark

Q37.

:	5 (a	t	transverse waves have vibrations that are perpendicular / normal to the direction of energy travel				
					linal waves have vibrations that are parallel irection of energy travel	В1	[2]
	(1	945	vibratior either or or		ns are in a single direction applies to transverse waves	М1	
		c			normal to direction of wave energy travel normal to direction of wave propagation		[2]
	(6	c) (i)	1.	amplitude = 2.8 cm	В1	[1]
				2.	phase difference = 135° or 0.75π rad or 3π r	M1	
					unit	A1	[2]
		(i	i)	amı	plitude = 3.96 cm (4.0 cm)	A1	[1]
Q38.							
4	(a)			200 TO 100 V	ss through the elements / gaps / slits in the grating to geometric shadow	M1 A1	[2]
	(b)	(i)	1	e	displacements add to give resultant displacement each wavelength travels the same path difference or are in phase nence produce a maximum	B1 B1 A0	[2]
			2	3	o obtain a maximum the path difference must be λ or phase difference 860° / 2π rad 2 of red and blue are different nence maxima at different angles / positions	B1 B1 A0	[2]
		(ii)			$d \sin \theta$ $\sin 61^{\circ} / (2 \times 625 \times 10^{-9}) = 7.0 \times 10^{5}$	C1 A1	[2]
		(iii)	n	= 1	2 × 625 is a constant (1250) $\rightarrow \lambda$ = 1250 outside visible $\rightarrow \lambda$ = 417 in visible	C1	
					$\rightarrow \lambda$ = 312.5 outside visible 20 nm	A1	[2]

Q39.

4	(a)	inci	ident	and reflected wa	ne) reflect at <u>closed end / end of tube</u> aves or these two waves are in <u>opposite directions</u> ave formed if tube length equivalent to	В1 М1	
				ર / 4, etc.		A1	[3]
	(b)	(i)	1.	no motion (as no	ode) / zero amplitude	В1	[1]
			2.	vibration backwa along length	ards and forwards / maximum amplitude	В1	[1]
		(ii)	L=	: 330 / 880 (= 0.37 : 3λ / 4 : 3 / 4 × (0.375) =		C1 C1 A1	[3]
Q40.							
5	(a)	tra	vel th	hrough a vacuum	n / free space	В1	[1]
	(b)	(i)	C:	name: name: name:	microwaves wavelength: 10^{-4} to 10^{-1} m ultra-violet / UV wavelength: 10^{-7} to 10^{-9} m wavelength: 10^{-9} to 10^{-12} m	B1 B1 B1	[3]
		(ii)	f:	$=\frac{3\times10^8}{500\times10^{-9}}$		C1	
			f =	= 6(.0) × 10 ¹⁴ Hz		A1	[2]
	(c)			ns are in one dire	ection n of propagation / energy transfer	М1	
		7000000		l sketch showing	2 - 12 12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	A1	[2]

Q41.

5	(a)	(1)	the equilibrium / mean / rest / undisturbed position (not 'distance moved')		В1	[1]
		(ii)	1. amplitude (= 80 / 4) = 20 mm		В1	[1]
			2. $v = f\lambda \text{ or } v = \lambda / T$ f = 1 / T = 1 / 0.2 (5 Hz) $v = 5 \times 1.5 = 7.5 \text{ ms}^{-1}$		C1 C1 A1	[3]
	(b)	355	nt A of rope shown at equilibrium position ne wavelength, shape, peaks / wave moved $1/4\lambda$ to right		B1 B1	[2]
	(c)	(i)	progressive as energy OR peaks OR troughs is/are transferred/moved/propagated (by the waves)		В1	[1]
		(ii)	transverse as particles/rope movement is perpendicular to direction of trave /propagation of the energy/wave velocity		В1	[1]
Q42.						
5	(a)	(i)	 wavelength: minimum distance between two points moving in phase OR distance between neighbouring or consecutive peaks or troughs OR wavelength is the distance moved by a wavefront in time T or one oscillation/cycle or period (of source) 	В1	[1]	ĺ
			2. frequency: number of wavefronts / (unit) time OR number of oscillations per unit time or oscillations/time	В1	[1]	ĺ
		(ii)	speed = $\frac{\text{distance}}{\text{distance}}$ / time = $\frac{\text{wavelength / time period}}{\text{distance}}$ = $\frac{\lambda}{T} = \lambda f$	M1 A0		6600
	(b)	(i)	amplitude = 4.0 mm (allow 1 s.f.)	Α1	[1]	Î
		(ii)	wavelength = $18 / 3.75$ (= 4.8) speed = $2.5 \times 4.8 \times 10^{-2} = 12 \times 10^{-2} \mathrm{m s^{-1}}$ unit consistent with numerical	C1		
			answer, e.g. in cm s ⁻¹ if cm used for λ and unit changed on answer line [if 18 cm = 3.5λ used giving speed 13 (12.9) cm s ⁻¹ allow max. 1].	A1	[2]	6
		(iii)	180° or π rad	A1	[1]	Ĺ
	(c)	100	nt and screen and correct positions above and below ripple tank obe or video camera	B1 B1		Ī