Q1.

	3	(a)	(1)	ductile	В1	
			(ii)1	L shown at end of straight line	B1	
			(ii)2	reciprocal of gradient of straight line region	B1	[3]
		(b)	(i)1	circumference = 3π cm or arc = $r\theta$ extension = $(6.5/360) \times 3\pi$ = 1.5 sin (or tan) 6.		
			(i)2	= 0.17 cmstrain = extension/length		
				= 0.17/250 = 6.8 x 10 ⁻⁴	A1	[4]
			(ii)	stress = force/area = (6.0 x 9.8)/(7.9 x 10 ⁻⁷)	C1	
				= 7.44 x 10 ⁷ Pa		[3]
		(iii)	Yo	ung modulus = stress/strain = (7.44 x 10 ⁷)/(6.8 x 10 ⁻⁴)		
				= 1.1 x 10 ¹¹ Pa	A1	[2]
		(iv)		nove extra load and see if pointer returns to original po e returns to original length		[1]
Q2.						
4		(a)	bri	ttle	В1	[1]
		(b)	(i) str	ess = force/area = 60/(7.9 × 10 ⁻⁷)	C1	
				$= 7.6 \times 10^7 \text{Pa}$	A1	[2]
				ung modulus = stress/strain iting strain = 0.03/24 (= 1.25 × 10 ⁻³)	C1 C1	
				ung modulus = $(7.6 \times 10^7)/(1.25 \times 10^{-3}) = 6.1 \times 10^{10} \text{ Pa}$		[3]
			(iii) en	ergy = $\frac{1}{2} \times 60 \times 3.0 \times 10^{-4}$ = 9.0×10^{-3} J	C1 A1	[2]
		(c)	an	nard, ball does not deform (much) d <u>either</u> (all) kinetic energy converted to strain energy If soft, E _k becomes strain energy of ball and w (no mention of <u>strain</u> energy, max 2 marks) impulse for hard ball takes place over shorter time (B1)		
				larger force/greater stress (B1)	,	[3]

Q3.

5	(a)		hysteresis loop/no permanent deformation not allow 'force proportional to extension')	М1		
			elastic change	A0		[1]
	(b)	F=	rk done = area under graph line OR average force × distance = $\frac{1}{2}Fx$ $\frac{1}{2}(F_2 + F_1)(x_2 - x_1)$ $\frac{1}{2}kx$, so work done = $\frac{1}{2}kx^2$ $\frac{1}{2}k(x_2 + x_1)(x_2 - x_1)$ ork done = $\frac{1}{2}k(x_2^2 - x_1^2)$	B1 A1 A1 A0		[3]
	(c)	kine	n in energy of trolley = $\frac{1}{2}k(0.060^2 - 0.045^2) + \frac{1}{2}k(0.030^2 - 0.045^2)$ = 0.36 J etic energy = $\frac{1}{2} \times 0.85 \times v^2 = 0.36$ 0.92 m s ⁻¹	C1 C1 C1 A1		[4]
Q4.						
2	(a)	(i)	k is the reciprocal of the gradient of the graph $k = \{32 / (4 \times 10^{-2}) = \} 800 \text{ N m}^{-1}$		C1 A1	[2]
		(ii)	either energy = average force × extension or $\frac{1}{2}kx^2$ or area under graph line energy = $\frac{1}{2} \times 800 \times (3.5 \times 10^{-2})^2$ or $\frac{1}{2} \times 28 \times 3.5 \times 10^{-2}$ energy = 0.49 J		C1 M1 A0	[2]
	(b)	(i)	momentum before cutting thread = momentum after $0 = 2400 \times V - 800 \times v$ $v / V = 3.0$		C1 M1 A0	[2]
		(ii)	energy stored in spring = kinetic energy of trolleys $0.49 = \frac{1}{2} \times 2.4 \times (\frac{1}{3} v)^2 + \frac{1}{2} \times 0.8 \times v^2$ $v = 0.96 \text{ m s}^{-1}$ (if only one trolley considered, or masses combined, allow max 1 mark)		C1 C1 A1	[3]
Q5.						
4	(a)	(i)	 stress = force / (cross-sectional) area strain = extension / <u>original</u> length Young modulus = stress / strain (ratios must be clear in each answer) 	B1 B1 B1	[1] [1] [1]	
		(ii)	either fluids cannot be deformed in one direction / cannot be stretched fluids can only have volume change or no fixed shape	В1	[1]	
	(b)	eiti	ther unless Δp is very large or 2.2×10^9 is a large number ΔV is very small or $\Delta V/V$ is very small, (so 'incompressible')	M1 A1	[2]	
	(c)	1.0 h	$b = h \rho q$ $0.1 \times 10^5 = h \times 1.08 \times 10^3 \times 9.81$ $= 9.53 \text{ m}$ $1.05 \times 10^5 = 0.47 \times 10^3 \times 9.81$	C1 C1		
			7/h = 0.47/10 or $0.47/9.53or = 4.7% or 4.9% or 5%$	A1	[3]	

Q6.

	4	(a)	(i)	change of shape / size / length / dimensionwhen (deforming) force is removed, returns to original shape / size	C1 A1		[2]
			(ii)	L = ke	B1		[1]
		(b)	½k	(allow e.c.f. from extension)	B1 B1 B1		
			-		B1		
			$\frac{2}{3}k$	(allow e.c.f. from extension)	B1		[5]
Q7. 3	(a)	or		energy (stored)/work done represented by area under graph energy = average force × extension		B1 C1 A1	[3]
				- 5.00		Λı	IJ
	(b)	(i)	eit or or	force on trolleys equal and opposite (A1) impulse = change in momentum (M1)		M1 A1	
				impulse on each equal and opposite (A1)			[2]
		(ii)		$M_1V_1=M_2V_2$		B1	[1]
				$\underline{\underline{E}} = \frac{1}{2} M_1 V_1^2 + \frac{1}{2} M_2 V_2^2 \qquad$		B1	[1]
		(iii)	1	$E_{\rm K} = \frac{1}{2}mv^2$ and $p = mv$ combined to give $E_{\rm K} = p^2/2m$		M1 A0	[1]
			2	m smaller, $E_{\rm K}$ is larger because p is the same/constantso trolley B		M1 A0	[1]
Q8.							
5	(a)	(i)	da	oung modulus = stress/strain	M1		[3]
		(ii)		nis mark was removed from the assessment, owing to a power-of-to- consistency in the printed question paper.	en		
	(b)	wh	en i	etween lines represents energy/area under curve represents energy rubber is stretched and then released/two areas are different ergy seen as thermal energy/heating/difference represents energy	A1		
				ed as heat	Δ1		[3]

Q9.

4	(a)	(i)	stress is force / area	B1	[1]
		(ii)	strain is extension / original length	В1	[1]
	(b)	(i)	$E = [F/A] \div [e/l]$ $e = (25 \times 1.7) / (5.74 \times 10^{-8} \times 1.6 \times 10^{11})$ $e = 4.6 \times 10^{-3}$ m	C1 C1 A1	[3
		(ii)	A becomes A/2 or stress is doubled $e \propto l/A$ or substitution into full formula total extension increase is $4e$	B1 B1 A1	[3]
Q10.					
4	(a)	atta	mped horizontal wire over pulley or vertical wire attached to ceiling with mass ached ails: reference mark on wire with fixed scale alongside	B1 B1	[2]
	(b)	me	asure original length of wire to reference mark with metre ruler / tape asure diameter with micrometer / digital calipers asure initial and final reading (for extension) with metre ruler or other suitable	(B1) (B1)	
		sca me	가게 있다면 하는 프로그램에 있다면 하는 사람들이 보고 있다면 하는 것이 하는 것이 되었다면 하는 것이다면 하는 것이다면 하는데	(B1) (B1)	
		me	asure diameter in several places / remove load and check wire returns to a length / take several readings with different loads	(B1)	
		MA	X of 4 points	B4	[4]
	(c)	plo det cal	emine extension from final and initial readings t a graph of force against extension emine gradient of graph for F/e culate area from $\pi d^2/4$ culate E from $E = F l/e A$ or gradient × l/A	(B1) (B1) (B1) (B1) (B1)	
		MA	X of 4 points	B4	[4]

Q11.

4	(a)	ford	ce is proportional to extension		В1	[1]
	(b)	(i)	gradient of graph determined (e.g. 50 / 40 ×10 ⁻³) = 1250 Nm ⁻¹		A 1	[1]
		(ii)	$W = \frac{1}{2} k x^2$ or $W = \frac{1}{2}$ final force × extension = $0.5 \times 1250 \times (36 \times 10^{-3})^2$ or $0.5 \times 45 \times 36 \times 10^{-3}$ = 0.81 J		M1 M1 A0	[2]
	(c)	(i)	$0.81 = \frac{1}{2} mv^2$ v = 8.0 (8.0498) ms ⁻¹		C1 A1	[2]
		(ii)	4 × KE / 4 × WD or 3.24 J hence twice the compression = 72 mm		C1 A1	[2]
		(iii)	Max height is when all KE or WD or elastic PE is converted to GPE ratio = 1/4 or 0.25		C1 A1	[2]
Q12.						
3	(a)		esultant force (and resultant torque) is zero eight (down) = force from/due to spring (up)	B1 B1		[2]
	(b)	(i)	0.2, 0.6, 1.0s (one of these)	A1		[1]
		(ii)	0, 0.8 s (one of these)	A1		[1]
		(iii)	0.2, 0.6, 1.0s (one of these)	A1		[1]
(c) (i)		ooke's law: extension is proportional to the force (not mass) near/straight line graph hence obeys Hooke's law	B1 B1		[2]
	(ii)		se of the gradient (not just $F = kx$) = $(0.4 \times 9.8) / 15 \times 10^{-2}$ = $26(.1) \text{ Nm}^{-1}$	C1 M1 A0		[2]
	(iii)) eit	ther energy = area to left of line or energy = $\frac{1}{2} ke^2$ = $\frac{1}{2} \times [(0.4 \times 9.8) / 15 \times 10^{-2}] \times (15 \times 10^{-2})^2$ = 0.294 J (allow 2 s.f.)	C1 C1 A1		[3]

Q13.

Q16.

5	(a)	E=	stress / strain	В1	[1]
	(b)	(i)	diameter / cross sectional area / radius original length	В1	[1]
		(ii)	measure original length with a <u>metre</u> ruler / tape measure the <u>diameter</u> with micrometer (screw gauge) allow digital vernier calipers	B1 B1	[2]
		(iii)	energy = $\frac{1}{2}$ Fe or area under graph or $\frac{1}{2}$ kx^2 = $\frac{1}{2}$ × 0.25 × 10 ⁻³ × 3 = 3.8 × 10 ⁻⁴ J	C1 A1	[2]
	(c)		eight line through origin below original line through (0.25, 1.5)	M1 A1	[2]
Q14					
1	(a)		e wire returns to its original length (not 'shape') en the load is removed	M1 A1	[2]
Q15					
4	(a)	(i)	stress = force / cross-sectional area	В1	[1]
		(ii)	strain = extension / original length	В1	[1]
	(b)	(i)	E = stress / strain $E = 0.17 \times 10^{12}$ $\text{stress} = 0.17 \times 10^{12} \times 0.095 / 100$ $= 1.6(2) \times 10^8 \text{Pa}$	C1 C1 C1 A1	[4]
		(ii)	force = (stress × area) = $1.615 \times 10^8 \times 0.18 \times 10^{-6}$ = 29(.1)N	C1 A1	[2]

6

9 (a) (i)	stress = F / A	C1	
	= 1.47×10^7 Pa(do not allow 1 sig fig)	A1	
(ii)	stress = $E \times \text{strain}$	C1	
	$\Delta l = 0.37 \mathrm{mm}$	A 1	[4]
(b)	$R = \rho l/A$ OR $R \propto L$	C1	
	so, $\Delta R/R = \Delta I/I$	C1	
	$\Delta R = (3.7 \times 10^{-4} / 1.8) \times 0.03 = 6.2 \times 10^{-6} \Omega$	A1	[3]
	May calculate $\rho = 2.833 \times 10^{-8} \Omega \text{ m}$		
	giving new R as $3.0006167 \times 10^{-2} \Omega$		
	hence ΔR - full credit possible		
	However, if rounds off ρ as $2.83 \times 10^{-8} \Omega$ m,		
	then $R_{\text{new}} < R_{\text{old}}!$		
	Allow 1 mark only for $R \propto L$		

Q17.

5	(a) (i) F/A	B1
	(ii) AL/L	B1
	(iii) FL/A.∆L	B1 [3]
	(b) (i) $\Delta L = 0.012 \times 0.62 \times 350$	M2
	= 2.6 mm	A0 [2]
	(ii) $2.0 \times 10^{11} = (F \times 0.62)/(7.9 \times 10^{-7} \times 2.6 \times 10^{-3})$	C1
	F = 660 N	A1 [2]

(iii) either stress when cold = $660/(7.9 \times 10^{-7}) = 840 \text{ MPa}$ or tension at uts = 198 N M1 either this is greater than the ultimate tensile stress **A1** or tension at uts is less then tension in (ii) the wire will snap A1 [3] (Allow possibility for the two 'A' marks to be scored as long as some quantitative answer – even if incorrect – has been given for the 'M' mark) Q18. **B1** 6 (a) (i) $R = \rho L/A$ **B1** (ii) strain = $\Delta L / L$ **B1** either $\Delta R = \rho \Delta L /A$ or $R \propto L$ with ρ and A constant dividing, $\Delta R / R = \Delta L / L$ A0 [3] (b) Young modulus = stress / strain C1 strain = $72.0 / (1.20 \times 10^{-7} \times 2.10 \times 10^{11})$ C1 $= 2.86 \times 10^{-3}$ (allow 1/350) A1 $\Delta R = 2.86 \times 10^{-3} \times 4.17 = 1.19 \times 10^{-2} \Omega$ A1 answer given to 3 sig. fig B1 [5] Q19. (a) brittle [1] B1 (b) Young modulus = stress / strain C1 $= (9.5 \times 10^8) / 0.013$ = 7.3×10^{10} Pa (allow $\pm 0.1 \times 10^{10}$ Pa) A1 [2] (c) stress = force / area C1 (minimum) area = $(1.9 \times 10^3) / (9.5 \times 10^8)$ $= 2.0 \times 10^{-6} \,\mathrm{m}^2$ C1 (max) area of cross-section = $(3.2 - 2.0) \times 10^{-6}$ $= 1.2 \times 10^{-6} \text{ m}^2$ A1 [3] (d) when bent, 'top' and 'bottom' edges have different extensions M1 with thick rod, difference is greater (than with a thin rod) A1 so breaks with less bending A0 [2]

Q20.

4	(a)	(i)	returns to original shape / size / length etc		
		(ii)	1 R = ρL/A		1000000
	(b)	= (= <i>WR</i> / e ρ	C1	
				[То	tal: 7]
Q21.					
4	(a)		lity to do work a result of a change of shape of an object/stretched etc		[2]
	(b)	eiti or F =	rk = average force ×distance moved (in direction of the force)	B1 B1	[3]
	(c)	(i)	spring constant = $\frac{3.8}{2.1}$		[1]
		(ii)	$1 \Delta E_{P} = mg\Delta h or W\Delta h$ $= 3.8 \times 1.5 \times 10^{-2}$	C1	
			= 0.057 J	A1	[2]
			= 0.077 J		[1]
			3 work done = $0.077 - 0.057$ = 0.020 J (allow e.c.f. if $\Delta E_8 > \Delta E_P$)	A1	[1]

[Total: 10]

Q22.

4	(a) (i)	F/A	B1	[1]
	(ii)	ΔL / L	В1	[1]
	(iii)	allow FL/AΔL	В1	[1]
	(iv)	allow $\rho L/A$ or $\rho(L + \Delta L)/A$	В1	[1]
	(b) (i)	$\Delta L = FL / EA$ = $(30 \times 2.6) / (7.0 \times 10^{10} \times 3.8 \times 10^{-7})$ = 2.93×10^{-3} m = 2.93 mm	M1 A0	[1]
	(ii)	$\Delta R = \rho \Delta L / A$ = (2.6 × 10 ⁻⁸ × 2.93 × 10 ⁻³) / (3.8 × 10 ⁻⁷)	C1	
		$= 2.0 \times 10^{-4} \Omega$	A1	[2]
		ange in resistance is (very) small method is not appropriate	M1 A1	[2]
Q23				
4	(H	nergy = average force × extension = $\frac{1}{2} \times F \times x$ Hooke's law) extension proportional to (applied) force ence $F = kx$ o $E = \frac{1}{2}kx^2$	B1 B1 B1 B1	[4]
	(b) (i) correct area shaded	В1	[1]
	(ii	1.0 cm ² represents 1.0 mJ or correct units used in calculation $E_S = 6.4 \pm 0.2$ mJ (for answer > ± 0.2 mJ but $\leq \pm 0.4$ mJ, then allow 2/3 marks)	C1 A2	[3]
	(iii) arrangement of atoms / molecules is changed	В1	[1]

Q24.

(a) (i) Fig. 5.2 **B1** [1] (ii) Fig. 5.3 B1 [1] (b) kinetic energy increases from zero then decreases to zero [1] **B1** (c) (i) $\Delta E_P = mg\Delta h / mgh$ C1 $= 94 \times 10^{-3} \times 9.8 \times 2.6 \times 10^{-2}$ using g = 10 then -1A1 [2] (ii) either $0.024 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2$ or $\frac{1}{2}kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2 - \frac{1}{2}kd^2$ C₁ $kd^2 = \frac{1}{2}k \times (2.6 \times 10^{-2})^2$ $0.012 = \frac{1}{2}k \times d^2$ C1 $d = 0.018 \,\mathrm{m}$ $d = 0.018 \,\mathrm{m}$ = 1.8 cm= 1.8 cm[3] A1 Q25. (a) extension is proportional to force (for small extensions) **B1** [1] (b) (i) point beyond which (the spring) does not return to its original length when the load is removed **B1** [1] (ii) gradient of graph = 80 Nm⁻¹ A1 [1] (iii) work done is area under graph / ½ Fx / ½ kx2 C1 $= 0.5 \times 6.4 \times 0.08 = 0.256$ (allow 0.26) J [2] A1 (c) (i) extension = 0.08 + 0.04 = 0.12 m [1] (ii) spring constant = $6.4 / 0.12 = 53.3 \text{ Nm}^{-1}$ Α1 [1] Q26. (a) (i) stress = force / (cross-sectional) area **B1** [1] (ii) strain = extension / original length or change in length / original length **B1** [1] (b) point beyond which material does not return to the original length / shape / size

B1

[1]

when the load / force is removed

(c) UTS is the maximum force / <u>original</u> cross-sectional area wire is able to support / before it breaks	M1 A1	[2]
allow one: maximum stress the wire is able to support / before it breaks		
(d) (i) straight line from (0,0) correct shape in plastic region	M1 A1	[2]
(ii) only a straight line from (0,0)	В1	[1]
 (e) (i) ductile: initially force proportional to extension then a large extension for small change in force brittle: force proportional to extension until it breaks (ii) 1. does not return to its original length / permanent extension (as entered) 	B1 B1	[2]
plastic region) 2. returns to original length / no extension (as no plastic region / still in	B1	
elastic region)	B1	[2]
Q27.		
5 (a) when the load is removed then the wire / body object does not return to its original		2000 BUSES
length	B1	[1]
(b) (i) stress = force / area $F = 220 \times 10^6 \times 1.54 \times 10^{-6} = 340 (338.8) \text{N}$	C1 A1	[2]
(ii) $E = (F \times l) / (A \times e)$ $e = (90 \times 10^6) \times 1.75 / (1.2 \times 10^{11}) = 1.31 \times 10^{-3} \text{m}$	C1 A1	[2]
(c) the stress is no longer proportional to the extension	В1	[1]
Q28.		
6 (a) extension is proportional to force / load	В1	[1]
(b) $F = mg$ $x = (mg/k) = 0.41 \times 9.81 / 25 = (4.02 / 25)$ x = 0.16 m	C1 M1 A0	[2]
(c) (i) weight and (reaction) force from spring (which is equal to tension in spring)	В1	[1]
(ii) F – weight or $0.06 \times 25 = ma$ $F = 0.2209 \times 25 = 5.52$ (N) or $0.22 \times 25 = 5.5$	C1	
$a = (5.52 - 0.41 \times 9.81) / 0.41$ or $1.5 / 0.41$ and $(5.5 - 4.02)$ $a = 3.7 (3.66) \text{m s}^{-2}$ gives 3.6m s^{-2}	C1 A1	[3]
(d) elastic potential energy / strain energy to kinetic energy and gravitational potential energy stretching / extension reduces and velocity increases / height increases	B1 B1	[2]