M1. (a) $3 \mathrm{kHz}(1)$
(b) (i) (age related) as f increases, loss increases (1)
(ii) (noise related) loss is maximum at 4 kHz (1)
(c) (i) (use of intensity level $=10 \log ^{\frac{I}{I_{0}}}$ gives)

$$
\begin{aligned}
& I=1.0 \times 10^{-12} \times 10^{8810}(1) \\
& =3.98 \times 10^{-4} \mathrm{~W} \mathrm{~m}^{-2}(1)
\end{aligned}
$$

(ii) (use of same equation gives)
intensity level $=10 \log \left(\frac{3.98 \times 10^{-4}-7.0 \times 10^{-5}}{1.0 \times 10^{-12}}\right)$
$=85(.2) \mathrm{dB}(1)$
(allow C.E. for incorrect / from (i)) (1)

M2. (a) (i)
intensity level/dB

general shape flatter and passing through 120, 1000 (1)
(ii) both most sensitive at $\approx 3000 \mathrm{~Hz}$ (1)
(b)

(i) $\quad \operatorname{trace} \mathrm{A}(\square)$, basic shape correct (1)
(ii) trace $\mathrm{B}(-----)$, basic shape correct (1)
(iii) loss due to age increases with frequency (1) loss due to noise is maximum at 4000 Hz (1)

Page 4
PhysicsAndMathsTutor.com

