Paper 1 Mark scheme

Question number	Acceptable answers	Additional guidance	Mark
1	D		1
2	А		1
3	D		1
4	D		1
5	В		1
6	С		1
7	D		1
8	D		1
9	С		1
10	А		1

(Total for Multiple Choice Questions = 10 marks)

Question number	Acceptable answers	Additional guidance	Mark
11	An explanation that makes reference to:		
	• Most alpha particles pass through undeflected (1) OR some deflected through a small angle (1)		
	• A very small number are deflected through an angle greater than 900 (1)		
	• This suggests that the alpha particles are deflected by a charged nucleus that has a very small diameter compared to that of the atom rather than the charge being distributed throughout the atom (1)		
	• and that most of the mass of the atom is concentrated in the nucleus rather than distributed throughout the atom (1)		4

(Total for Question 11 = 4 marks)

Question number	Acceptable answers	Additional guidance	Mark	
12 (a)	 Recognises that weight acts at midpoint of diving board 1.8 (m) from X (1) Use of moment = perpendicular force x distance (1) Total clockwise moment = 3150 Nm (1) Recognises that clockwise moment = anticlockwise moment (1) F=3500 N (1) 	Example of calculation: Total clockwise moment = $(680x3.6)+(390x1.8)$ = 3150 Nm F = 3150/0.9 = 3500 N	5	
12 (b)	 The forces are different types (1) The forces act on the same object (1) 		2	

(Total for Question 12 = 7 marks)

Question number	Acceptable answers	Additional guidance	Mark
13 (a)	 The number of charge carriers increases with temperature (1) So this <u>lowers</u> the resistance (despite the increase in lattice vibrations) (1) 	Accept number of electrons.	2
13 (b)	 <i>R</i>_T = 0.7 - 0.8 kΩ [read from graph] (1) Use of <i>V</i>=<i>IR</i> (with 3.5 V and <i>R</i>_T) to find <i>I</i> and <i>V</i>=<i>IR</i> (with <i>V</i> = 5.5 <i>V</i>) to find <i>R</i> (1) <i>R</i>=1100 - 1300 Ω (1) 	Accept use of $Vo = Vs\left(\frac{R_1}{R_1 + R_2}\right)$	
		Or $V_{out}/(V_s - V_{out}) \ge R_T = R$	
		Example of calculation: $I = \frac{3.5}{750} = 0.0047 \text{ A}$	
		$R = \frac{5.5}{0.0047} = 1170 \ \Omega$ (Total for Ouestic	3

(Total for Question 13 = 5 marks)

Question number	Acceptable answers	Additional guidance	Mark
14 (a)	EitherCalculate acceleration (1)	Example of calculation: $F = \frac{0.06 \times 25}{0.04} = 37.5 \text{ N}$	
	• Use of $F = ma$ (1)	0.04 - 57.5 1	
	• $F = 38 \text{ N} (1)$		
	OR		
	• Calculate change in momentum (1)		
	• Use of $F = \frac{\Delta m v}{\Delta t}$ (1)		
	• $F = 38 \text{ N} (1)$		
			3
14 (b)	• Use of $s = ut + \frac{1}{2}at^2$ (1)	Answer consistent with calculated value.	
	• Use of $s = \frac{1}{2}at^2$ with vertical components to find t (1)	Example of calculation:	
	• Use of $s = ut$ with horizontal components to find s (1)	$t = \sqrt{\frac{2 \times 2.5}{9.81}} = 0.714 \text{ s}$	
	• Subtract 12 from their answer for horizontal distance (1)	9.81	
		$s = 25 \times 0.714 = 17.85 \text{ m}$	
	range of the net (1)	Distance from net = $17.85 - 12 = 5.9$ m	6
	 Distance from net = 6 m (1) Makes conclusion whether the ball is within the required 	$s = 25 \times 0.714 = 17.85 \text{ m}$	<u>14 - 9</u>

(Total for Question 14 = 9 marks)

Question number	Acceptable answers			Additional guidance	Mark
15 (a)*	and logically str sustained reason Marks are award answer is structu	uctured answer with ing. led for indicative co ured and shows line able shows how the	bility to show a coherent h linkages and fully- ontent and for how the s of reasoning. marks should be awarded	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points which is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	

-	
opareon Edevi	Ques num
rel I evel 3 Advanced GCF in Physic	15 (a)* (contir
Pesrenn Edeveel I evel 3 Advanced GCE in Physics	15 (a (cont

Question number	The following table shows how the marks should		Additional guidance	Mark
(a)* ontinued)				
		Number of marks awarded for structure of answer and sustained line of reasoning		
	Answer shows a coherent and logical structure with linkages and fully sustained lines of reasoning demonstrated throughout	2		
	Answer is partially structured with some linkages and lines of reasoning	1		
	Answer has no linkages between points and is unstructured	0		

Question number	Acceptable answers	Additional guidance	Mark
15 (a)* (continued)	Indicative content		
	 At terminal velocity the forces on the drop are balanced OR weight = drag The p.d. creates an electrostatic force acting upwards on the drop The electrostatic force increases as p.d. increases The net upward force causes the drop to have a negative acceleration As speed decreases the drag decreases The drop remains stationary when the forces are balanced OR until the drop remains stationary when weight = electrostatic force 		6
15 (b)	 Equate the electric force and the gravitational force (1) Use of E=V/d to obtain q = mgd/V (1) 	qE = mg $q(V/d) = mg$ $q = mgd/V$	2
15 (c)	 An explanation that makes reference to: Electrostatic/upward force (on drop) would be greater than the weight/downward force (1) So drop would <u>accelerate</u> upwards (1) 	Indication of which force is greater, unbalanced is insufficient.	2

(Total for Question 15 = 10 marks)

n Edevo	Question number		Acceptable	answers	A
Pearson Edevrel I evel 3 Advanced GCE in Physics	16 (a)*	and logically stru- sustained reason Marks are award answer is structu	uctured answer with ing. led for indicative coured and shows line uble shows how the	bility to show a coherent n linkages and fully- ontent and for how the s of reasoning. marks should be awarded	Guidance on how applied: The mark for indi the mark for lines answer with five partially structure reasoning scores content and 1 mar
n		Number of indicative marking points seen in	Number of marks awarded for indicative marking points		linkages and lines If there are no lin indicative markin score of 3 marks

	Acceptable	answers	Additional guidance	Mark
and logically str sustained reason Marks are award answer is structu	uctured answer with ing. led for indicative co ured and shows line able shows how the	bility to show a coherent n linkages and fully- ontent and for how the s of reasoning. marks should be awarded	Guidance on how the mark scheme should be applied: The mark for indicative content should be added to the mark for lines of reasoning. For example, an answer with five indicative marking points which is partially structured with some linkages and lines of reasoning scores 4 marks (3 marks for indicative content and 1 mark for partial structure and some	
Number of indicative marking points seen in answer 6 5-4 3-2 1 0	Number of marks awarded for indicative marking points 4 3 2 1 0		linkages and lines of reasoning). If there are no linkages between points, the same five indicative marking points would yield an overall score of 3 marks (3 marks for indicative content and no marks for linkages).	

Question number	Acceptable answers Image: Comparison of the second sec		Additional guidance	
l6 (a)* (continued)				
		Number of marks awarded for structure of answer and sustained line of reasoning		
	Answer shows a coherent and logical structure with linkages and fully sustained lines of reasoning demonstrated throughout	2		
	Answer is partially structured with some linkages and lines of reasoning	1		
	Answer has no linkages between points and is unstructured	0		

Question number	Acceptable answers	Additional guidance	Mark
16 (a)* (continued)	Indicative content	Allow provides dc to charge battery or similar.	
	 The supply creates a changing <u>magnetic field</u> in the iron core Rate of change of flux in toothbrush coil is equal to rate of change of flux in charger coil (for an ideal transformer) The changing <u>flux linkage</u> in the coil of the toothbrush induces an e.m.f. according to Faraday's law E = - N dφ/dt so to step down the e.m.f. there must be fewer turns in the toothbrush coil The e.m.f. in the toothbrush coil must be larger than the toothbrush battery Diode is included so battery is not discharged by the alternating e.m.f. 		6
16 (b)(i)	$R=47.4 \Omega$ (1)	Example of calculation: $R = 2.7 V/0.057 A = 47.4 \Omega$	1
16 (b)(ii)	 Use of <i>E</i>=<i>V</i>+<i>Ir</i> or correct attempt to find <i>r</i> (1) <i>r</i> = 57.9 Ω or find ratio ^R/_r (1) Makes conclusion by comparing <i>r</i> and <i>R</i>, recognising maximum power supplied when ^R/_r = 1 (1) 	Answer consistent with calculated value. Example of calculation: $r = \frac{(6.0 V - 2.7 V)}{0.057 A} - 50 = 57.9 \Omega$	3

Question number	Acceptable answers	Additional guidance	Mark
17 (a)	• Use of:	Example of calculation:	
	$R = \frac{\rho L}{\rho}$	$R_B \ L_2 d_1^2$	
	$R = \frac{\rho L}{A} $ (1)	$\frac{R_B}{R_A} = \frac{L_2 d_1^2}{L_1 d_2^2}$	
	• $\frac{R_B}{R_A} = 0.5$ [accept 2:4 or 1:2 or 1/2] (1)	$\frac{R_B}{R_A} = \frac{2Ld^2}{L(2d)^2} = \frac{2}{4} = 0.5$	2
17 (b)	• Correct transfer of data for gradient (1)	Answer to be consistent with calculated value.	
	• Large triangle used (1)		
	• $\rho = 1.1 \times 10^{-4} \Omega m (1)$	Example of calculation:	
		Gradient = $\rho L = 16.5 \times 10^{-6} \Omega m^2$	
	Conclusion: 1.1×10^{-4} Orn is supported than 2×10^{-5} Orn as an istivity increases	$\rho = 16.5 \times 10^{-6} \ \Omega m^2 / 0.15 \ m = 1.1 \times 10^{-4} \ \Omega m$	
	• $1.1 \times 10^{-4} \Omega m$ is greater than 3 x $10^{-5} \Omega m$, so resistivity increases when clay is added (1)		4
17 (c)	An explanation that makes reference to:	Allow reduce mean free path or drift velocity of	
		electrons.	
	• A rise in temperature causes the amplitude of the vibrating ions to increase (1)		
	 This causes the number of collisions per second between the ions 		
	and the moving electrons to increase (1)	Accept current decreases	
	• So the rate of flow of electrons decreases (causing the resistance	Accept current decreases	
	of the metal to increase) (1)		3

(1 otal for Question 17 = 9 marks)

Question number	Acceptable answers	Additional guidance		Mark	
18 (a)	 Use of F = BIl or use of F=Bqv (1) Converts N to kg m s⁻² (1) 	Example $B = \frac{F[\text{kg m } s^{-2}]}{I[\text{A}] \ l[\text{m}]}$ So units are kg A ⁻¹ s ⁻²			2
18 (b)	 An explanation that makes reference to: The magnetic force on the electrons acts at right angles to the plane containing <i>B</i> and <i>v</i> (1) Hence the force is always towards the centre of the circle (1) So providing a centripetal force on the electron or a centripetal acceleration that maintains circular motion (1) 				3
18 (c)	 Calculates <i>B</i> x r (1) Calculate the percentage uncertainty (1) Suitable comment on difference from expectation (1) Weak conclusion because only three readings (1) OR no repeats (1) OR limited range (1) 	Example of cal % U = $(0.06/5.0)$ Radius /cm	lculation: 01) x 100% = 1.2% Magnetic flux density/mT		
		8.0 9.5	0.63	5.04 4.94	_
		11.0	0.46	5.06	4

(Total for Question 18 = 9 marks)

49

number	Acceptable answers	Additional guidance	Mark
9 (a)	An explanation that makes reference to:		
	 Electrons/charge transferred from negatively charged plate to positively charge plate through the resistor (1) Hence the charge on capacitor decreases (exponentially) (1) Until the charge on the capacitor equals 0/negligible (1) 		3
9 (b)	Either • Use $Q = 2.6$ to read time constant from graph (1) OR draw tangent to curve at $t = 0$ and obtain time constant from intercept on x axis (1) • $t = 17 - 18$ (ms) (1) • Use of $T = RC$ with their T (1) • $C = 0.019 - 0.021$ mF (1) OR • $Q_0 = 7$ (mC) read from graph (1) • Any corresponding values of Q and t read from graph (1) • Use of $Q=Q_0 e^{-t/RC}$ with their values for Q_0 , Q and t (1) • $C = 0.0195 - 0.0196$ mF (1) OR • $Q_0 = 7$ (mC) read from graph (1) • $Q = 3.5$ (mC) when $T_{1/2} = 12.3$ (ms) (1) • Use of $T_{1/2} = RC \ln 2$ (1) • $C = 0.0195 - 0.0196$ mF (1)	Example of calculation: T = 19 (ms) $C = 19 \text{ x } 10^{-3}/900 = 0.021 \text{ mF}$	

Question number	Acceptable answers	Additional guidance	Mark
20 (a)(i)	 Recognise that for passenger to remain in their seat normal reaction R ≥ 0 (1) or centripetal force >= weight (1) Equate centripetal force and weight (for R=0) (1) v = 9.1 m s⁻¹ (1) 	Example of calculation: $\frac{mv^2}{r} = mg$ $v = \sqrt{rg} = \sqrt{8.5 \text{m} \times 9.81 \text{ms}^{-2}} = 9.13 \text{ms}^{-1}$	3
20 (a)(ii)	 Equate decrease in gravitational potential energy to increase in kinetic energy at top of loop (1) Adds this to 17.0 (1) Δh = 21.3 m (1) 	Example of calculation: $mgh = \frac{1}{2}mv^2$ $h = \frac{v^2}{2g} = \frac{(9.13 \text{ m s}^{-1})^2}{2 \times 9.81 \text{ m s}^{-2}} = 4.25 \text{ m}$ $\Delta h = 17 + 4.3 = 21.3 \text{ m}$	3
20 (b)(i)	• Use of $a = \frac{v^2}{r}$ (1) • $a = 6.1g$ (1)	Example of calculation: $a = \frac{v^2}{r} = \frac{(22.5 \mathrm{m s^{-1}})^2}{8.5 \mathrm{m}} = 59.6 \mathrm{m s^{-2}}$ $a = 59.6/9.8 = 6.1 \mathrm{g}$	2
20 (b)(ii)	 An explanation that makes reference to: Radius of curvature smallest at the top of the loop (1) OR radius larger at the bottom of the loop (1) So acceleration at bottom is less for the same speed (1) 		2

(Total for Question 20 = 10 marks)

PMT

л