Write your name here					
Surname	Other na	mes			
Edexcel GCE	Centre Number	Candidate Number			
Physics Advanced Subsidiary Unit 3B: Exploring Physics International Alternative to Internal Assessment					
Tuesday 18 January 2011	– Morning	Paper Reference			
Time: 1 hour 20 minutes	S	6PH07/01			

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Some questions must be answered with a cross in a box (\boxtimes) .

If you change your mind about an answer, put a line through the box (\bigotimes) and then mark your new answer with a cross (\bigotimes) .

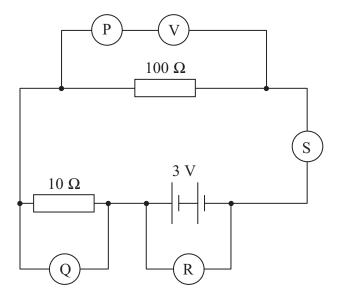
Information

- The total mark for this paper is 40.
- The marks for each question are shown in brackets
 use this as a quide as to how much time to spend on each question.
- The list of data, formulae and relationships is printed at the end of this booklet.
- Candidates may use a scientific calculator.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

N37699A ©2011 Edexcel Limited.


SECTION A

Answer ALL questions.

For questions 1–5, in Section A, select one answer from A to D and put a cross in the box ⊠. If you change your mind put a line through the box ₩ and then mark your new answer with a cross ⋈.

The picture below shows a multimeter similar to those used in many school laboratories.

Use the diagrams on page 2 for questions 1 and 2.

1 The multimeter is used to measure the potential difference across the 100 Ω resistor in the circuit.

Which one of the following would be the best setting to use?

■ **B** 20 V

■ D 2000 mV

(Total for Question 1 = 1 mark)

2 An ammeter is used to measure the current in the 100Ω resistor. Which one of the letters P, Q, R or S on the circuit diagram shows the best position for the ammeter?

 \square A P

 \blacksquare B Q

C R

 \square **D** S

(Total for Question 2 = 1 mark)

Use the information below to answer questions 3 and 4.

A student is investigating the variation in the emf generated by a solar cell with light intensity. She varies the distance between the solar cell and a lamp.

2	XX 71. : - 1.		- C 41	C- 11	:	• -	41	1 1	1 4	:-1-1-0	
3	wnich	one	of the	TOILO	wing	1S	tne	indep	enaent	variable?	

A distance

B emf

C light intensity

D power of the lamp

(Total for Question 3 = 1 mark)

4 Which one of the following is the measured dependent variable?

A distance

B emf

C light intensity

D power of the lamp

(Total for Question 4 = 1 mark)

5 A student takes the following three measurements of the diameter in mm of a ball bearing.

4.21, 4.20, 4.21

Which one of the following should be stated as the average result?

■ A 4.2 mm

B 4.20 mm

C 4.207 mm

D 4.21 mm

(Total for Question 5 = 1 mark)

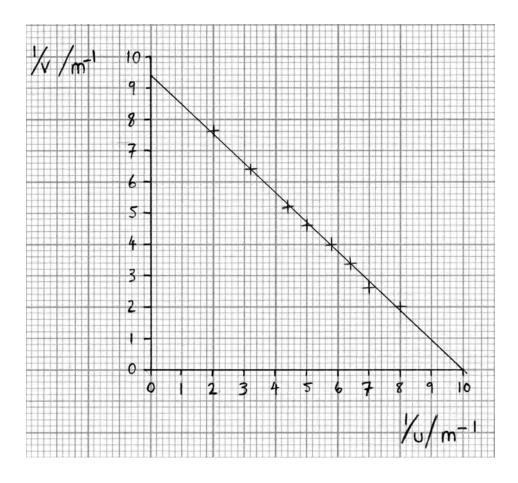
TOTAL FOR SECTION A = 5 MARKS

SECTION B

Answer ALL questions in the spaces provided.

6	An experiment involves measuring the time taken for a ball to fall through different distances. The maximum distance is 1.5 m.
	One student says that it is better to use light gates or sensors and a datalogger. Another student says that just using a stopwatch is better.
	Discuss the advantages and disadvantages of each method.
_	(Total for Question 6 = 4 marks)

7	You are to plan an experiment to determine the Young modulus of a material in the form of a long wire. You are to use a graphical method. Assume that standard laboratory apparatus is available.	n
	Your answer should include:	
	(a) a labelled diagram of the apparatus to be used,	(1)
	(b) a list of any additional apparatus required that is not shown in the diagram,	(1)
	(c) the quantities to be measured,	(1)
	(d) an explanation of your choice of measuring instrument for two of these quantities,	(4)
	(e) which is the independent and which is the dependent variable,	(1)
	(f) how the data collected will be used to determine the Young modulus,	(2)
	(g) the main source of uncertainty and/or systematic error,	(1)
	(h) a comment on safety.	(1)



(Total for Question 7 = 12 marks)

8 A student does an experiment to find the focal length f of a lens. He measures the distance u from an object to the lens and the corresponding distance v from the lens to the focused image. He repeats this for various values of u and v.

The graph plotted by the student is shown below.

(a) Mark with a cross (⋈) the answer A, B, C or D which best completes the following sentence.

(1)

The line on the graph shows that 1/v and 1/u

- A are directly proportional.
- **B** are inversely proportional.
- C have a linear relationship.
- **D** have a positive correlation.

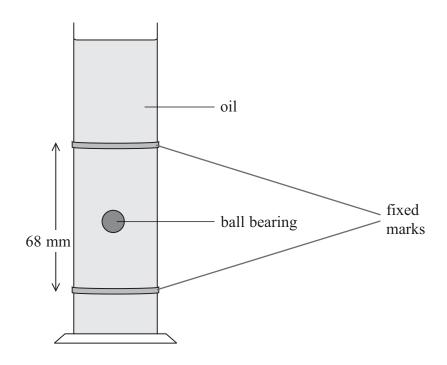
(3)

	4.5	TT1	4.	1 4.	c		1		
((b)) The	equation	relating	1,	u	and	ν	15

$$1/f = 1/u + 1/v$$

Rearrange this equation to show that:

- the gradient of the graph should be -1
- the intercept with the y axis is 1/f.


(c) Use the intercept on the y axis to determine a value for f .	(3)

*f*_

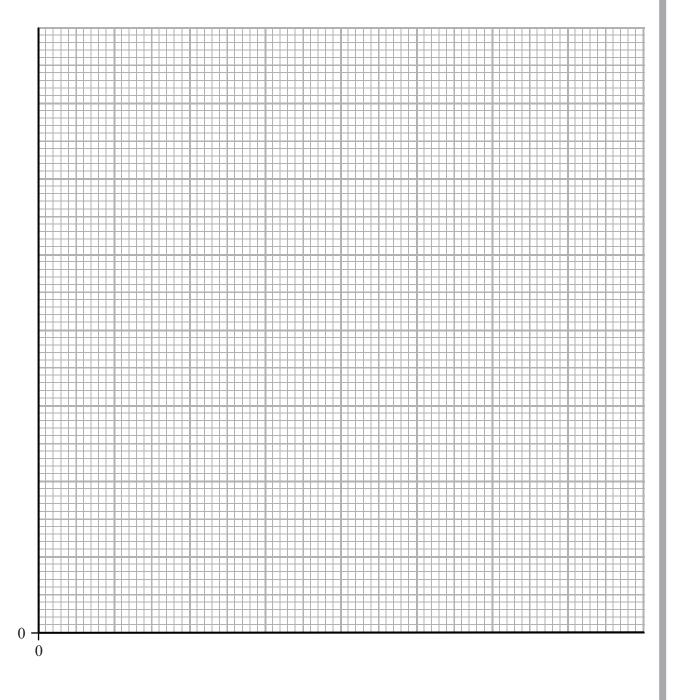
(Total for Question 8 = 7 marks)

9 A student does an experiment to determine the viscosity of an oil. She drops ball bearings of different diameters into a tube of the oil. She timed the ball bearings between two fixed marks.

She planned to plot a graph to determine the viscosity of the oil. All her results are shown in the table below.

Diameter/mm	Time/s	Time/s	Time/s	Average time/s
3	27.97	29.91	26.12	28
4	8.75	7.97	7.53	8.08
6.01	4.22	4.37	4.16	4.25
12.03	2.19	2.40	2.37	2.32

(a) Criticise the set of results.	
	(2)


(b) The ball bearings were timed falling a distance of 68 mm. Complete the table below.

(4

Diameter/mm	Radius/mm	Radius ² /mm ²	Average time/s	Velocity/
3	1.5	2.3	28	2.4
4	2.0	4.0	8.08	8.4
6.01			4.25	
12.03	6.0	36.0	2.32	29.3

(c) Use your values to plot a graph of velocity against radius squared on the grid below.

(5)

(d) The student expected to obtain a straight line graph.	
Suggest one possible reason for the apparent error in her measurements.	(1)
(Total for Question 9	= 12 marks)
TOTAL FOR SECTION B =	35 MARKS

TOTAL FOR PAPER = 40 MARKS

List of data, formulae and relationships

Acceleration of free fall $g = 9.81 \text{ m s}^{-2}$ (close to Earth's surface)

Electron charge $e = -1.60 \times 10^{-19} \,\mathrm{C}$

Electron mass $m_e = 9.11 \times 10^{-31} \text{kg}$

Electronvolt $1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$

Gravitational field strength $g = 9.81 \text{ N kg}^{-1}$ (close to Earth's surface)

Planck constant $h = 6.63 \times 10^{-34} \,\mathrm{J s}$

Speed of light in a vacuum $c = 3.00 \times 10^8 \,\mathrm{m \, s^{-1}}$

Unit 1

Mechanics

Kinematic equations of motion v = u + at

 $s = ut + \frac{1}{2}at^2$ $v^2 = u^2 + 2as$

Forces $\Sigma F = ma$

g = F/mW = mg

Work and energy $\Delta W = F \Delta s$

 $E_{\rm k} = \frac{1}{2}mv^2$

 $\Delta E_{\rm grav} = mg\Delta h$

Materials

Stokes' law $F = 6\pi \eta r v$

Hooke's law $F = k\Delta x$

Density $\rho = m/V$

Pressure p = F/A

Young modulus $E = \sigma/\varepsilon$ where

Stress $\sigma = F/A$ Strain $\varepsilon = \Delta x/x$

Elastic strain energy $E_{\rm el} = \frac{1}{2}F\Delta x$

Unit 2

Waves

Wave speed $v = f\lambda$

Refractive index $_{1}\mu_{2} = \sin i / \sin r = v_{1} / v_{2}$

Electricity

Potential difference V = W/Q

Resistance R = V/I

Electrical power, energy and P = VIefficiency $P = I^2 I$

 $P = I^{2}R$ $P = V^{2}/R$ W = VIt

% efficiency = $\frac{\text{useful energy output}}{\text{energy input}} \times 100$

% efficiency = $\frac{\text{useful power output}}{\text{power input}} \times 100$

Resistivity $R = \rho l/A$

Current $I = \Delta Q/\Delta t$

I = nqvA

Resistors in series $R = R_1 + R_2 + R_3$

Resistors in parallel $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$

Quantum physics

Photon model E = hf

Einstein's photoelectric $hf = \phi + \frac{1}{2}mv_{\text{max}}^2$

equation

BLANK PAGE

BLANK PAGE

