Unit 5: Thermodynamics, Radiation, Oscillations and Cosmology - Mark scheme

Question number	Answer	Mark
1	В	1
2	D	1
3	В	1
4	С	1
5	D	1
6	С	1
7	D	1
8	Α	1
9	D	1
10	В	1

Question	Answer	
number 11	The star is viewed from two positions at 6-month intervals	3
	Or The star is viewed from opposite ends of the Earth's orbit diameter about the Sun (1)	
	• The change in angular position of the star against backdrop of fixed stars is measured (1)	
	 Trigonometry is used to calculate the distance (to the star) [Do not accept Pythagoras] Or The diameter/radius of the Earth's orbit about the Sun must be known 	
	Or The distance to the Sun is 1AU (1)	
	Full marks may be obtained from a suitably annotated diagram, e.g.	
	E θ_{1} nearby star	
	R = 1A.U. to fixed/ distant stars	
	θ,	
	E_1 Trigonometry is used to calculate d	
	[Accept the symmetrical diagram seen in many textbooks]	
	Total for Question 11	3

Question number	Answer	Mark
12(a)	• Use of $\Delta E = mc\Delta\theta$ (1) • Use of $P = \frac{\Delta W}{\Delta t}$ (1) • Time taken = 130 s	3
	Example of calculation $\Delta E = 3 \times 0.325 \text{ kg} \times 4190 \text{ J kg}^{-1} \text{ K}^{-1} \times (100 - 8.5) \text{ K} = 373 \text{ 800 J}$ $\Delta t = \frac{373 \text{ 800 J}}{2.80 \times 10^3 \text{ W}} = 134 \text{ s}$	
12(b)	• Use of $\Delta E = L\Delta m$ (1) • Difference between power input and useful power calculated (1) • Rate of thermal energy transfer to surroundings = 340 W (1) <u>Example of calculation</u> $\frac{\Delta E}{\Delta t} = 2.26 \times 10^6 \text{ J kg}^{-1} \times \frac{0.136 \text{ kg}}{125 \text{ s}} = 2460 \text{ W}$ Rate of thermal energy transfer to surroundings = 2800 W - 2460 W = 340 W	3
	Total for Question 12	6

Question number	Answer	Mark
13(a)	• $\alpha \operatorname{correct}(1)$ (1) • Th correct (1) (1) $^{238}\text{U} \rightarrow ^{234}\text{Th} + \frac{4}{\alpha}$	2
13(b)(i)	• Use of $A = -\lambda N$ (1) • Use of $\lambda = \frac{ln2}{t_{1/2}}$ (1) • $N = 7.47 \times 10^{18}$ (1) Example of calculation $\lambda = \frac{ln2}{1.41 \times 10^{17} \text{s}} = 4.91 \times 10^{-18} \text{s}^{-1}$ $36.7 \text{ s}^{-1} = -4.91 \times 10^{-18} \text{s}^{-1} \times N$ $\therefore N = \frac{36.7 \text{ s}^{-1}}{4.91 \times 10^{-18} \text{s}^{-1}} = 7.47 \times 10^{18}$	3

Question number	Answer	Mark
13(b)(ii)	• The decay products are radioactive Or the background radiation should be subtracted from the recorded	1
	Total for Question 13	6

Question number	Answer		Mark
14(a)	• Use of $pV = NkT$ (1 • Conversion of temperature from °C to K (1 • $N = 3.82 \times 10^{23}$ (1)))))	3
	$N = \frac{1.10 \times 10^5 \text{Pa} \times 0.0142 \text{ m}^3}{1.38 \times 10^{-23} \text{J K}^{-1} \times (23.5 + 273) \text{K}} = 3.82 \times 10^{23}$		
14(b)	 If the temperature of the helium gas is increased then The pressure exerted by the helium inside the balloon increases (1) (so the volume of the balloon will increase) until the pressure exerted by the helium equals the external air pressure (1))	2
	Total for Question 14		5

Question number	Answer	Mark
15(a)	The binding energy is:	1
	• The energy released when the nucleons come together to form the nucleus Or The energy required to split the nucleus up into its component nucleons (1)	
15(b)(i)	• Calculation of mass difference in kg (1) • Use of $\Delta E = c^2 \Delta m$ (1) • Conversion from kg into MeV (1) • $\Delta E = 8.5$ MeV (1)	4
	Example of calculation $\Delta m = (1.00728 + [2 \times 1.00867] - 3.01551)u \times 1.66 \times 10^{-27} \text{kg}$ $\therefore \Delta m = 1.51 \times 10^{-29} \text{ kg}$ $\Delta E = (3 \times 10^8 \text{m s}^{-1})^2 \times 1.51 \times 10^{-29} \text{kg} = 1.36 \times 10^{-12} \text{J}$ $\Delta E = \frac{1.36 \times 10^{-12} \text{J}}{1.6 \times 10^{-13} \text{J MeV}^{-1}} = 8.49 \text{ MeV}$	
15(b)(ii)	 When massive nuclei undergo fusion the binding energy per nucleon decreases Hence energy must be supplied in order for fusion to proceed (1) 	2
	Total for Question 15	7

Question number	Answer	Mark
16(a)	• Use of $L = 4\pi r^2 \sigma T^4$ (1)	2
	• $r = 6.9 \times 10^8 \mathrm{m}$ (1)	
	Example of calculation	
	$r = \sqrt{\frac{3.85 \times 10^{26} \text{W}}{4\pi \times 5.67 \times 10^{-8} \text{W m}^{-2} \text{ K}^{-4} \times (5800)^4}} = 6.91 \times 10^8 \text{m}$	
16(b)	• Use of $I = \frac{L}{4\pi d^2}$ (1)	5
	• Use of fraction dissipated (1)	
	• Use of efficiency= $\frac{\text{useful power out}}{\frac{1}{1+1}}$ (1)	
	• Use of $I = \frac{P}{A}$ (1)	
	• $P = 56 \text{ MW}$ (1)	
	Example of calculation	
	$I = \frac{3.85 \times 10^{26} \text{W}}{4\pi \times (1.50 \times 10^{11} \text{m})^2} = 1360 \text{ W m}^{-2}$ P = 1360 W m ⁻² × (1-0.25) × 0.22 × 250 000 m ² = 5.61 × 10 ⁷ W	
	Total for Question 16	7

Question number	Answer	Mark
17(a)	Resonance (1)	1
17(b)	• Use of $f = \frac{n}{t}$ (1)	4
	• Use of $\omega = 2\pi f$ (1)	
	• $a = 14 \text{ m s}^{-2}$ (1)	
	Example of calculation	
	$f = \frac{38}{60 \text{ s}} = 0.633 \text{ s}^{-1}$	
	$\omega = 2\pi \times 0.633 \text{ s}^{-1} = 3.98 \text{ rad s}^{-1}$	
	$a = -(3.98 \text{ rad s}^{-1})^2 \times 0.90 \text{ m} = 14.3 \text{ m s}^{-2}$	
17(c)(i)	• Both forces drawn and labelled (1)	1
	Example of diagram	
	(normal) reaction/ R	
	weight/mg/W	
17(c)(ii)	• There must always be an acceleration towards the equilibrium position Or there must always be a resultant force towards the equilibrium position (1)	3
	• (Applying Newton's 2^{nd} law) W – R = ma	
	so $K = W - ma$ (1) • If $a > a$ then $R = 0$ and so car will lose contact with the road (1)	
	Total for Question 17	9

Question number	Answer			Mark
18(a)	• The fan in the toy pushes the air molecu	les downwards	(1)	3
	• According to Newton's 3rd law, toy is p	oushed upwards by the air	(1)	
	• The upward force balances the weight of the toy (1)		(1)	
18(b)	This question assesses a student's ability to show a coherent and logically		6	
10(0)	structured answer with linkages and fully-sustained reasoning.			
	Marks are awarded for indicative content and for how the answer is structured			
	and shows lines of reasoning.			
	The following table snows now the marks s	nould be awarded for indicative		
	Number of Number of marks			
	indicative awarded for			
	marking points indicative			
	seen in answer marking points			
	6 4			
	3-4 3 $3-2$ 2			
	0 0			
	The following table shows how the marks s	hould be awarded for structure		
	and lines of reasoning.		- -	
	N	umber of marks awarded for		
	st. Iii	ructure of answer and sustained		
	Answer shows a coherent and	2		
	logical structure with linkages	2		
	and fully sustained lines of			
	reasoning demonstrated			
			-	
	with some linkages and lines of	1		
	reasoning			
	Answer has no linkages	0		
	between points and is			
	unstructured			
	Total marks awarded is the sum of marks for	or indicative content and the		
	marks for structure and lines of reasoning			
	Indicative content			
	• applying Newton's 3rd law, toy A exer	ts a force on toy B and vice versa		
	• forces equal in magnitude and opposite	in direction		
	• forces act for same time			
	• $F\Delta t_{\rm A} = - F\Delta t_{\rm B}$			
	• applying Newton's 2nd law $F\Delta t = \Delta p$			
	• total momentum change = 0, so moment Or Δn for one toy = $-\Delta n$ for the other t	tum conserved		
	Total for Question 18			9
	Lotal for Question 10			1

Question number	Answer	Mark
19(a)	For simple harmonic motion the acceleration of the tyre is:	2
	 directly proportional to displacement from equilibrium position (1) always acting towards the equilibrium position 	
	Or idea that acceleration is in the opposite direction to displacement (1)	
	[Accept definition in terms of force]	
19(b)(i)	• Use of $\omega = \frac{2\pi}{T}$ with $T = 3$ s (1)	3
	• Use of $a = -\omega^2 x$ (1)	
	• $A = 0.46 \text{ m}$	
	Example of calculation	
	$\omega = \frac{2\pi}{6.0 \text{ s/2}} = 2.09 \text{ rad s}^{-1}$	
	$A = \frac{2 \text{ m s}^{-2}}{(2.00 \text{ m s}^{-1})^2} = 0.456 \text{ m}$	
	(2.09 rad s ⁻¹)	
19(b)(ii)	• Use of $v = A\omega \sin \omega t$ (1)	2
	• $v = 0.95 \text{ m s}^{-1}$ (allow e.c.f. ω and A from b(1)) (1)	
	Example of calculation	
	$v = 0.456 \text{ m} \times 2.09 \text{ rad s}^{-1} = 0.953 \text{ m s}^{-1}$	

Question number	Answer		Mark
20(a)(i)	• States $F = \frac{GMm}{2}$	(1)	2
	• $mg = \frac{GMm}{r^2}$ leading to $g = \frac{GM}{r^2}$	(1)	
20(a)(ii)	• $g = \frac{GM}{r^2}$ combined with $a = r\omega^2$		4
	Or $F = \frac{GMm}{r^2}$ combined with $F = mr\omega^2$	(1)	
	(accept equations in terms of v or ω)		
	• Use of $\omega = \frac{2\pi}{T}$ Or $v = \frac{2\pi r}{T}$	(1)	
	• Maths to show $T^2 = \frac{4\pi^2 r^3}{GM}$	(1)	
	• π , G and M identified as being constant, so $T^2 \propto r^3$	(1)	
	Example of derivation		
	$\frac{GM}{r^2} = r\omega^2 = r\left(\frac{2\pi}{T}\right)^2$		
	$\therefore \frac{GM}{r^2} = \frac{4\pi^2 r}{T^2}$		
	$\therefore T^2 = \frac{4\pi^2 r^3}{GM}$		
	$\therefore T^2 \propto r^3$		
20(b)(i)	• $T = 24$ hours for a geostationary orbit	(1)	3
	• Use of $T^2 \propto r^3$	(1)	
	• $h = 3.5 \times 10^{7} \text{ m}$	(1)	
	Example of calculation		
	$\frac{T_1^2}{T_2^2} = \frac{r_1^3}{r_2^3}$		
	$\therefore r_2 = \sqrt[3]{\frac{(24 \times 60 \text{ min})^2}{(88 \text{ min})^2}} \times 6.4 \times 10^6 \text{m} = 4.13 \times 10^7 \text{m}$		
	$\therefore h = 4.13 \times 10^7 \text{m} - 6.4 \times 10^6 \text{m} = 3.49 \times 10^7 \text{m}$		
20(b)(ii)	• Idea that there must be a common axis of rotation for the satellite and the Forth		1
	Or the plane of the satellite's orbit must be at right angles to the spin axis of the Earth	(1)	
	Total for Question 20		10

Question number	Answer		Mark
21(a)(i)	• A main sequence star is fusing/burning hydrogen in its core	(1)	1
21(a)(i)	Diagonal region from top left to bottom right to include the Sun and Proxima Centauri	(1)	1
	Example of diagram		
21(b)(i)	 Alpha Orionis and Proxima Centauri both have a surface temperature of about 3000 K So according to Wien's law (λ_{max}T = 2.9 × 10⁻³) both will emit emradiation that peaks in the same region of the spectrum Alpha Orionis has a much greater luminosity than Proxima Centauri According to Stefan's law (L = 4πr²σT⁴) so Alpha Orionis must have a much larger radius than Proxima Centauri 	 (1) (1) (1) 	4
21(b)(ii)	 Sirius B is off the main sequence, has a much higher surface temperature but about the same luminosity as Proxima Centauri So hydrogen fusion has ceased in the core of Sirius B whereas it hasn't for Proxima Centauri Since Sirius B is much hotter but about the same luminosity this means it must have a much smaller radius than Proxima Centauri 	(1) (1) (1)	3
	Total for Question 21		9