Specimen Paper

GCE A LEVEL

MARK SCHEME

MAXIMUM MARK: 100

SYLLABUS/COMPONENT: 9702/04

PHYSICS Paper 4

Page 1	Mark Scheme	Syllabus	Paper
	A and AS LEVEL – SPECIMEN PAPER	9702	4

Section A

(a) (i) (ii)	radial lines pointing inwards no difference <i>OR</i> lines closer near surface of smaller sphere		[3]
(b) (i)	$= (6.67 \times 10^{-11} \times 5.98 \times 10^{24}) / (6380 \times 10^{3})^{2}$	C1	
(ii)	$F_{\rm C} = mR\omega^2$ $\omega = 2\pi / T$ $F_{\rm C} = (4\pi^2 \times 6380 \times 10^3) / (8.64 \times 10^4)^2$	C1 C1	
(iii)	$F_{\rm G.} - F_{\rm C} = 9.77 \rm N$	A1	[6]
(c) bed	B1 B1	[2]	
(a) (i)	$\omega = 2\pi f$	B1	
(ii)	(-)ve because a and x in opposite directions OR a directed towards mean position / centre	B1	[2]
(b) (i) forces in springs are $k(e + x)$ and $k(e - x)$ resultant = $k(e + x) - k(e - x)$ = $2kx$		C1 M1 A0	[2]
(ii)	(ii) $F = ma$ a = -2kx/m		[0]
(iii)		C1 C1 A1	[2] [3]
	(ii) (b) (i) (iii) (c) bed according (ii) (ii) (b) (i) (iii)	(ii) no difference OR lines closer near surface of smaller sphere (b) (i) $F_G = GMm/R^2$ $= (6.67 \times 10^{-11} \times 5.98 \times 10^{24}) / (6380 \times 10^3)^2$ $= 9.80 \text{ N}$ (ii) $F_C = mR\omega^2$ $\omega = 2\pi / T$ $F_C = (4\pi^2 \times 6380 \times 10^3) / (8.64 \times 10^4)^2$ $= 0.0337 \text{ N}$ (iii) $F_G - F_C = 9.77 \text{ N}$ (c) because acceleration (of free fall) is (resultant) force per unit mass acceleration = 9.77 m s^{-2} (a) (i) $\omega = 2\pi f$ (ii) (-)ve because a and x in opposite directions OR a directed towards mean position $/$ centre (b) (i) forces in springs are $k(e + x)$ and $k(e - x)$ resultant $= k(e + x) - k(e - x)$ $= 2kx$ (ii) $F = ma$ $= -2kx / m$ (-)ve sign explained (iii) $\omega^2 = 2k / m$ $= (2\pi f)^2 = (2 \times 120) / 0.90$	pointing inwards (ii) no difference OR lines closer near surface of smaller sphere B1 (b) (i) $F_G = GMm/R^2$ $= (6.67 \times 10^{-11} \times 5.98 \times 10^{24}) / (6380 \times 10^3)^2$ $= 9.80 \text{ N}$ A1 (ii) $F_C = mR\omega^2$ $\omega = 2\pi / T$ $F_C = (4\pi^2 \times 6380 \times 10^3) / (8.64 \times 10^4)^2$ $= 0.0337 \text{ N}$ A1 (iii) $F_G - F_C = 9.77 \text{ N}$ A1 (c) because acceleration (of free fall) is (resultant) force per unit mass acceleration = 9.77 m s ⁻² B1 (a) (i) $\omega = 2\pi f$ B1 (ii) (-)ve because α and α in opposite directions α or α directed towards mean position / centre B1 (b) (i) forces in springs are α (α + α) and α (α) and α) and an explained (iii) α = α (α) and α) and an explained (iii) α = α (α) and an explained (iii) α = α (α) and an explained (iii) α = α (α) and an explained (iii) α = α (α) and an explained (iii) α = α (α) and an explained (iii) α = α (α) and an explained (iii) α = α (α) and

	Page 2	Mark Scheme	Syllabus	Pa	per	
		A and AS LEVEL – SPECIMEN PAPER	9702		4	
3	` '	(a) single diode in series with a.c. supply			[2]	
	(b) (i) 1	5.4 V (allow ±0.1 V)		A1		
	` '	V = iR $I = 5.4 / 1.5 \times 10^{3}$ $= 3.6 \times 10^{-3} \text{ A}$		C1 A1		
	(i) 3 t	time = 0.027 s		A1	[4]	
	(ii) 1	$Q = it = 3.6 \times 10^{-3} \times 0.027$		C1		
		$= 9.72 \times 10^{-5} \text{ C}$		A1		
	(ii) 2	$C = \Delta Q / \Delta V$ (allow $C = Q/V$ for this mark) = $(9.72 \times 10^{-5}) / 1.2$		C1		
		$= 8.1 \times 10^{-5} F$		A1	[4]	
	(c) line:	reasonable shape with less ripple		B1	[1]	
4	(a) (i) 50 m	nT		A1		
		linkage = <i>BAN</i>		C1		
	, ,	$= 50 \times 10^{-3} \times 0.4 \times 10^{-4} \times 150 = 3.0 \times 10^{-4} \text{ W}$ $w 49 \text{ mT} \rightarrow 2.94 \times 10^{-4} \text{ Wb or } 51 \text{ mT} \rightarrow 3.06 \times 10^{-4} \text{ Wb})$	√b	A1	[3]	
	(b) e.m.f. / induced voltage (do not allow current)					
	proportional/equal to			B1		
	rate of c	rate of change/cutting of flux (linkage)			[2]	
	(c) (i) new	flux linkage = $8.0 \times 10^{-3} \times 0.4 \times 10^{-4} \times 150$ = 4.8×10^{-5} Wb		C1		
	char	$-4.0 \times 10^{-4} \text{ Wb}$		A1	[2]	
		f. = $(2.52 \times 10^{-4}) / 0.30$		C1		
	(,	$= 8.4 \times 10^{-4} \text{ V}$		A1	[2]	
	` '	flux linkage decreases as distance increases so speed must increase to keep rate of change constant		B1 B1	[2]	
		at constant speed, e.m.f. / flux linkage decreases as x increase speed to keep rate constant		(B1) (B1)		

	Page 3		Mark Scheme S	Syllabus	Pa	per
			A and AS LEVEL – SPECIMEN PAPER	4		
5	(a) into	o (plane c	of) paper / downwards		B1	[1]
	(b) (i)		ripetal force = mv^2 / r Bqv hence q/m = v/r B (some algebra essential)		B1 B1	[2]
	(ii)		= $(8.2 \times 10^6) / (23 \times 10^{-2} \times 0.74)$ = 4.82×10^7 C kg ⁻¹		C1 A1	[2]
	(c) (i)		= $(1.6 \times 10^{-19}) / (4.82 \times 10^7 \times 1.66 \times 10^{-27})$ = $2u$		C1	[2]
	(ii)	proton +	- neutron		B1	[1]
6	T	= 985 K	$\times 10^6 \times 30 \times 300) / (1.1 \times 10^5 \times 540)$		C1 C1 A1	[3]
	(b) (i)		+ w s identified correctly as correct		M1 A1	[2]
	(ii)	is positive ΔU is rist and mean	ove $OR \Delta U = w$ and U increases se in kinetic energy of atoms an kinetic energy $\propto T$ of the last two marks if states 'U increases so T rises')	B1 B1 M1 A1	[4]
7	(a) (i)		probability of decay or $dN/dt = (-)\lambda N$ OR $A = (-)\lambda N$ or	(-) <i>AN</i>	M1 A1	[2]
	(ii)	(parent) nucleus	energy of α-particle means nucleus less stable more likely to decay tadium-224		M0 A1 A1 A1	[3]
	(b) (i)	either unit	= 0.193 = 2.23×10^{-6} day ⁻¹ s ⁻¹		A1 A1	[2]
	(ii)	$ \begin{array}{rcl} N &= \{(2 \\ = 6. \end{array} $	1.fig., -1, allow λ in hr^{-1}) 2.24 × 10 ⁻³) / 224} × 6.02 × 10 ²³ 02 × 10 ¹⁸		C1 C1	
			= λN = $2.23 \times 10^{-6} \times 6.02 \times 10^{18}$ = 1.3×10^{13} Bq		C1 A1	[4]

Page 4	Mark Scheme	Syllabus	Paper
	A and AS LEVEL – SPECIMEN PAPER	9702	4

Section B

8	(a)	+	_	B1	[1]
	(b)		 2. Use of potential divider formula 9 × 800 / (800 + 2200) 2.4 V 39.0 V 	B1 C1 A1 B1	[4]
		(ii)	green (e.c.f. from (a) and (i)3)	B1	[1]
	(c)		71 9	М1 А1	[2]
9	(a)	(i)	clear distinction of boundaries between regions	B1	
	()	(ii)	<u> </u>	B1	[2]
	(h)	/i\	$\frac{1}{2} = e^{-\mu}$	C1	
	(D)	(1)	1	A1	[2]
		(ii)	-, (1	M1	
			μ is smaller	A1	[2]
10	(a)		r	M1 A1	[2]
	(b)	syn	nmetrical with smaller sidebands	B1 B1 B1	[3]
	(c)	bar	ndwidth = 10 kHz	B1	[1]
	(-,				
11	(a)	unv	wanted energy / power that is random or that covers whole spectrum	B1	[1]
	(b)	63	$= 10 \lg (P_{OUT} / (2.5 \times 10^{-6}))$	C1 C1 A1	[3]
	(c)		3 \(\)	C1 A1	[2]
12	seld allo mo allo	ects ocate nito ocate	rmits entry to PSTN base station for any handset es a carrier frequency/channel rs handset signal to re-allocate base station es time slot for multiplexing etc ur sensible suggestions, 1 each to max 4)	B4	[4]
	,	,			r -1