

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

PHYSICS

9702/42 October/November 2016

Paper 4 A Level Structured Questions MARK SCHEME Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

PMT

Pa	age 2 Mark Scheme Syllabus		Paper 42		
			Cambridge International AS/A Level – October/November 2016 9702		
1	(a)	forc	e per unit mass	B1	[1]
	(b)	(i)	radius/diameter/size (of Proxima Centauri) \ll /is much less than 4.0×10^{13} km/separation (of Sun and star) or		
			(because) it is a <u>uniform</u> sphere	B1	[1]
		(ii)	1. field strength = GM/x^2		
			$= (6.67 \times 10^{-11} \times 2.5 \times 10^{29}) / (4.0 \times 10^{13} \times 10^{3})^{2}$	C1	
			$= 1.0 \times 10^{-14} \mathrm{N kg^{-1}}$	A1	[2]
			2. force = field strength × mass		
			$= 1.0 \times 10^{-14} \times 2.0 \times 10^{30}$	C1	
			or		
			force = GMm/x^2		
			$= (6.67 \times 10^{-11} \times 2.5 \times 10^{29} \times 2.0 \times 10^{30}) / (4.0 \times 10^{13} \times 10^{3})^{2}$	(C1)	
			$= 2.0 \times 10^{16} N$	A1	[2]
	(c)	forc	e (of 2 \times 10 ¹⁶ N) would have little effect on (large) mass of Sun	B1	
			IId cause an acceleration of Sun of $1.0 \times 10^{-14} \text{ m s}^{-2}/\text{very small/negligible}$ eleration	B1	[2]
		or			
			ny stars all around the Sun effect of forces/fields is zero	(B1) (B1)	
2	(a)	(i)	number of moles/amount of substance	B1	[1]
		(ii)	kelvin temperature/absolute temperature/thermodynamic temperature	B1	[1]
	(b)	рV	= nRT		
		4.9	$\times 10^5 \times 2.4 \times 10^3 \times 10^{-6} = n \times 8.31 \times 373$	B1	
		n =	0.38 (mol)	C1	
		nun	nber of molecules or $N = 0.38 \times 6.02 \times 10^{23} = 2.3 \times 10^{23}$	A1	[3]

Pa	age 3		Mark Scheme Cambridge International AS/A Level – October/November 2016	Syllabus 9702	Pap 42	
		or	Sambruge memational ASIA Level - Octobel/November 2010	<i>JIUZ</i>	42	
			= NkT		(C1)	
		4.9	$\times 10^{5} \times 2.4 \times 10^{3} \times 10^{-6} = N \times 1.38 \times 10^{-23} \times 373$		(M1)	
		nur	nber of molecules or $N = 2.3 \times 10^{23}$		(A1)	
	(c)	vol	ume occupied by one molecule = $(2.4 \times 10^3) / (2.3 \times 10^{23})$		C1	
			$= 1.04 \times 10^{-20} \mathrm{cm}^3$			
		me	an spacing = $(1.04 \times 10^{-20})^{1/3}$		C1	
			$= 2.2 \times 10^{-7} \text{ cm} (allow 1 \text{ s.f.})$		A1	[3]
		(all	ow other dimensionally correct methods e.g. $V = (4/3)\pi r^3$)			
3	(a)	•	m of/total) potential energy and kinetic energy of (all) molecules/part erence to random (distribution)	icles	M1 A1	[2]
	(b)	(i)	no heat enters (gas)/leaves (gas)/no heating (of gas)		B1	
			work done by gas (against atmosphere as it expands)		M1	
			internal energy decreases		A1	[3]
		(ii)	volume decreases so work done on ice/water (allow work done negligible because ΔV small)		B1	
			heating of ice (to break rigid forces/bonds)		M1	
			internal energy increases		A1	[3]
4	(a)	(i)	0.225s and 0.525s		A1	[1]
		(ii)	period or $T = 0.30$ s and $\omega = 2\pi/T$		C1	
			$\omega = 2\pi/0.30$			
			$\omega = 21 \mathrm{rad}\mathrm{s}^{-1}$		A1	[2]
		(iii)	speed = ωx_0 or $\omega (x_0^2 - x^2)^{1/2}$ and $x = 0$		C1	
			$= 20.9 \times 2.0 \times 10^{-2} = 0.42 \text{m s}^{-1}$		A1	[2]

Ρ	age 4	1	Mark Scheme	Syllabus	Pape	er
			Cambridge International AS/A Level – October/November 2016	9702	42	
		cor	e of tangent method: rect tangent shown on Fig. 4.2 king e.g. $\Delta y / \Delta x$ leading to maximum speed in range (0.38–0.46) ms	S ⁻¹	(C1) (A1)	
	(b)	cur	tch: reasonably shaped continuous oval/circle surrounding $(0,0)$ ve passes through $(0, 0.42)$ and $(0, -0.42)$ ve passes through $(2.0, 0)$ and $(-2.0, 0)$		B1 B1 B1	[3]
5	(a)	or	nsducer/transmitter can be also be used as the receiver nsducer both transmits and receives			
		rec	eives reflected pulses between the emitted pulses			
		(ne	eds to be pulsed) in order to measure/determine depth(s)			
		(ne	eds to be pulsed) to determine nature of boundaries			
		Any	/ three of the above marking points, 1 mark each		B2	[2]
	(b)	(i)	product of speed of (ultra)sound and density (of medium)		M1	
			reference to speed of sound in medium		A1	[2]
		(ii)	if Z_1 and Z_2 are (nearly) equal, I_T/I_0 (nearly) equal to 1/unity/(very) reflection/mostly transmission	little	B1	
			if $Z_1 \gg Z_2$ or $Z_1 \ll Z_2$ or the difference between Z_1 and Z_2 is (very) Is then I_T/I_0 is small/zero/mostly reflection/little transmission	arge,	B1	[2]
6	(a)	E=	0 or $E_{\rm A} = (-)E_{\rm B}$ (at $x = 11$ cm)		B1	
		Q _A /	$dx^2 = Q_{\rm B}/(20 - x)^2 = 11^2/9^2$		C1	
		Q _A /	$Q_{\rm B}$ or ratio = 1.5		A1	[3]
		or				
		E∝	$E = Q \text{ because } r \text{ same } or E = Q/4\pi\varepsilon_0 r^2 \text{ and } r \text{ same}$		(B1)	
		Q _A /	$^{\prime}Q_{\rm B} = 48/32$		(C1)	
		Q _A /	$Q_{\rm B}$ or ratio = 1.5		(A1)	

Pa	age 5			Syllabus	Раре	er
			Cambridge International AS/A Level – October/November 2016	9702	42	
	(b)	(i)	for max. speed, $\Delta V = (0.76 - 0.18) \text{ V}$ or $\Delta V = 0.58 \text{ V}$		C1	
			$q\Delta V = \frac{1}{2}mv^2$			
			$2 \times (1.60 \times 10^{-19}) \times 0.58 = \frac{1}{2} \times 4 \times 1.66 \times 10^{-27} \times v^2$		C1	
			$v^2 = 5.59 \times 10^7$			
			$v = 7.5 \times 10^3 \mathrm{ms^{-1}}$		A1	[3]
		(ii)	$\Delta V = 0.22 \text{ V}$		C1	
			$2 \times (1.60 \times 10^{-19}) \times 0.22 = \frac{1}{2} \times 4 \times 1.66 \times 10^{-27} \times v^2$			
			$v^2 = 2.12 \times 10^7$			
			$v = 4.6 \times 10^3 \mathrm{ms^{-1}}$		A1	[2]
7	(a)	(i)	charge/potential (difference) or charge per (unit) potential (differenc	e)	B1	[1]
			$(V = Q/4\pi\epsilon_0 r \text{ and } C = Q/V)$,		
		• •	for sphere, $C (= Q/V) = 4\pi\varepsilon_0 r$		C1	
			$C = 4\pi \times 8.85 \times 10^{-12} \times 12.5 \times 10^{-2} = 1.4 \times 10^{-11} \mathrm{F}$		A1	[2]
	(b)	(i)	$1/C_{\rm T} = 1/3.0 + 1/6.0$			
			$C_{\rm T}$ = 2.0 μ F		A1	[1]
		(ii)	total charge = charge on 3.0 μF capacitor = 2.0 (μ) \times 9.0 = 18 (μC)		C1	
			potential difference = $Q/C = 18 (\mu)C/3.0 (\mu)F = 6.0 V$		A1	[2]
			or			
			argument based on equal charges:			
			$3.0 \times V = 6.0 \times (9.0 - V)$		(C1)	
			<i>V</i> = 6.0 V		(A1)	
		(iii)	potential difference (= $9.0 - 6.0$) = $3.0 \vee$		C1	
			charge (= $3.0 \times 2.0 \ (\mu)$) = $6.0 \ \mu$ C		A1	[2]

Pa	age 6	Mark Scheme S	Syllabus	Pape	er
	-	Cambridge International AS/A Level – October/November 2016	9702	42	
8	(a)	P shown between earth symbol and voltmeter		B1	[1]
	(b)	(i) gain = $(50 \times 10^3)/100 = 500$		C1	
		$V_{\rm IN} (= 5.0/500) = 0.010 \rm V$		A1	[2]
		(ii) $V_{\rm IN} (= 5.0/5.0) = 1.0 \rm V$		A1	[1]
		e.g. multi-range (volt)meter c.r.o. sensitivity control amplifier channel selector		B1	[1]
9	. ,	(by Newton's third law) force on wire is up(wards) by (Fleming's) left-hand rule/right-hand slap rule to give current in direction left to right <u>shown on diagram</u>		M1 A1 A1	[3]
	(b)	force ∞ current or $F = BIL$ or $B (= 0.080/6.0L) = 1/75L$		C1	
		maximum current = $2.5 \times \sqrt{2}$ = 3.54 A		C1	
		maximum force in one direction = $(3.54/6.0) \times 0.080$ = 0.047 N		C1	
		difference (= 2×0.047) = 0.094 N or			
		force varies from 0.047 N upwards to 0.047 N downwards		A1	[4]
10	nucl	<u>ei</u> emitting r.f. (pulse)		B1	
	Larn field	nor frequency/r.f. frequency emitted/detected depends on magnitude of magnitude o	agnetic	B1	
	nucl	ei can be located (within a slice)		B1	
	char	nging field enables position of detection (slice) to be changed		B1	[4]
11	• •	(induced) e.m.f. proportional/equal to <u>rate</u> of change of (magnetic) flux (linkage)		M1 A1	[2]
		(for same current) iron core gives large(r) (rates of change of) flux (linkage e.m.f induced in solenoid is greater (for same current) induced e.m.f. opposes applied e.m.f. so current smaller/acts to reduce cu		B1 M1 A1	[3]

Page 7	Mark Scheme	Syllabus	Pape	er
	Cambridge International AS/A Level – October/November 2016	9702	42	
	or same supply so same induced e.m.f. balancing it (rate of change of) flux linkage is same smaller current for same flux when core present		(B1) (M1) (A1)	
(c)	e.g. (heating due to) eddy currents in core			
	(heating due to current in) resistance of coils			
	hysteresis losses/losses due to changing magnetic field in core			
	Any two of the above marking points, 1 mark each		B2	[2]
12 (a)	(i) <u>electron</u> diffraction/ <u>electron</u> microscope (allow other sensible sugg	estions)	B1	[1]
	ii) photoelectric effect/Compton scattering (allow other sensible sugge	estions)	B1	[1]
(b)	(i) arrow clear from –0.54 eV to –3.40 eV		B1	[1]
	(ii) $E = hc/\lambda$ or $E = hf$ and $c = f\lambda$		C1	
	$\lambda = (6.63 \times 10^{-34} \times 3.00 \times 10^8) / [(3.40 - 0.54) \times 1.60 \times 10^{-19}] = 4.35$	5 × 10 ⁻⁷ m	A1	[2]
(c)	 (i) wavelength associated with a particle that is moving/has momentum/has speed/has velocity 		M1 A1	[2]
	(ii) $\lambda = h/mv$			
	$v = (6.63 \times 10^{-34}) / (9.11 \times 10^{-31} \times 4.35 \times 10^{-7})$		C1	
	$= 1.67 \times 10^3 \mathrm{ms^{-1}}$		A1	[2]
	y image of a (single) slice/cross-section (through the patient) n from different angles/rotating X-ray (beam)		M1 A1	
	puter is used to form/process/build up/store <u>image</u> mage (of the slice)		B1 B1	
•	ated for many/different (neighbouring) slices uild up 3D image		M1 A1	[6]

PMT

Page 8	M	ark Scheme	Syllabus	Pape	er
	Cambridge International AS/A Level – October/November 2016		9702	42	
14 (a)	(i) 4_2 He or ${}^4_2\alpha$			B1	[1]
	ii) ¹ ₀ n			B1	[1]
(b)	(i) ∆ <i>m</i> = (29.97830 +1.00867	7) – (26.98153 + 4.00260)		C1	
	= 30.98697 - 30.9841	3			
	$= 2.84 \times 10^{-3} \text{ u}$			C1	[2]
	ii) $E = c^2 \Delta m$ or mc^2			C1	
	$= (3.0 \times 10^8)^2 \times 2.84 \times 10^8$	$0^{-3} \times 1.66 \times 10^{-27}$			
	$= 4.2 \times 10^{-13} \text{ J}$			A1	[2]
(c)	mass of products is greater tha	n mass of A l plus $lpha$			
	or reaction causes (net) <u>increase</u>	in (rest) mass (of the system)		B1	
	α-particle must have at <u>least</u> th	is amount of <u>kinetic energy</u>		B1	[2]