

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

PHYSICS 9702/41

Paper 4 A Level Structured Questions

October/November 2016

MARK SCHEME
Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
,	Cambridge International AS/A Level – October/November 2016	9702	41
1 (a) g	ravitational force provides/is the centripetal force		B1

$$GMm/r^2 = mv^2/r$$
 or $GMm/r^2 = mr\omega^2$
and $v = 2\pi r/T$ or $\omega = 2\pi/T$

M1

with algebra to $T^2 = 4\pi^2 r^3 / GM$

A1 [3]

or

acceleration due to gravity is the centripetal acceleration

(B1)

$$GM/r^2 = v^2/r$$
 or $GM/r^2 = r\omega^2$
and $v = 2\pi r/T$ or $\omega = 2\pi/T$

(M1)

with algebra to $T^2 = 4\pi^2 r^3 / GM$

(A1)

B1

(b) (i) equatorial orbit/orbits (directly) above the equator

B1 [2]

from west to east

(ii)
$$(24 \times 3600)^2 = 4\pi^2 r^3 / (6.67 \times 10^{-11} \times 6.0 \times 10^{24})$$

C1

$$r^3 = 7.57 \times 10^{22}$$

$$r = 4.2 \times 10^7 \,\mathrm{m}$$

A1

[2]

(c)
$$(T/24)^2 = \{(2.64 \times 10^7)/(4.23 \times 10^7)\}^3$$

= 0.243

B1

T = 12 hours

A1 [2]

or

$$k (= T^2/r^3) = 24^2/(4.23 \times 10^7)^3$$

= 7.61 × 10⁻²¹ (B1)

 $T^2 (= kr^3) = 7.61 \times 10^{-21} \times (2.64 \times 10^7)^3$ = 140

$$T = 12 \text{ hours}$$
 (A1)

2 (a) (i)
$$p \propto T$$
 or $pV/T = \text{constant}$ or $pV = nRT$ C1
$$T (= 5 \times 300 =) 1500 \text{ K}$$
 A1 [2]

(ii)
$$pV = nRT$$

 $1.0 \times 10^5 \times 4.0 \times 10^{-4} = n \times 8.31 \times 300$

 $5.0 \times 10^5 \times 4.0 \times 10^{-4} = n \times 8.31 \times 1500$

n = 0.016 mol A1 [2]

Syllabus

Paper

		(Cambridge International AS/A Level – October/November	2016 9702	41	
	(b)	(i)	 heating/thermal energy supplied 		B1	
			2. work done on/to system		B1	[2]
		(ii)	1. 240 J		A1	
			2. same value as given in 1. (= 240 J) and zero given for 3	3.	A1	
			3. zero		A1	[3]
3	(a)	2 <i>k</i> /	$m = \omega^2$		M1	
		ω=	$2\pi f$		M1	
		(2 >	$64/0.810$) = $(2\pi \times f)^2$ leading to $f = 2.0$ Hz		A1	[3]
	(b)		$\omega x_0 or v_0 = 2\pi f x_0$			
		or v =	$\omega (x_0^2 - x^2)^{1/2} \underline{\text{and}} x = 0$		C1	
		v ₀ :	$= 2\pi \times 2.0 \times 1.6 \times 10^{-2}$			
		=	$= 0.20 \mathrm{ms^{-1}}$		A1	[2]
	(c)		quency: reduced/decreased ximum speed: reduced/decreased		B1 B1	[2]
4	(a)	(i)	noise/distortion is removed (from the signal) the (original) signal is reformed/reproduced/recovered/restor	red	B1 B1	[2]
			or			
			signal detected above/below a threshold creates new signal of 1s and 0s		(B1) (B1)	
		(ii)	noise is superposed on the (displacement of the) signal/can distinguished	not be		
			or analogue/signal is continuous (so cannot be regenerated)			
			or analogue/signal is not discrete (so cannot be regenerated)		B1	
			noise is amplified with the signal		B1	[2]

Mark Scheme

Page 3

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9702	41

(b) (i) gain/dB =
$$10 \lg (P_2/P_1)$$

32 =
$$10 \lg [P_{MIN}/(0.38 \times 10^{-6})]$$

or
 $-32 = 10 \lg (0.38 \times 10^{-6}/P_{MIN})$

C1

$$P_{\rm MIN} = 6.0 \times 10^{-4} \, \rm W$$

A1

[2]

[2]

[2]

(ii) attenuation =
$$10 \lg [(9.5 \times 10^{-3})/(6.02 \times 10^{-4})]$$

C1

$$= 12 dB$$

attenuation per unit length (= 12/58) = 0.21 dB km⁻¹

A1

5 (a) in an electric field, charges (in a conductor) would move

В1

no movement of charge so zero field strength

B1

or

charge moves until F = 0 / E = 0

(B1)

(B1)

(b) at P,
$$E_A = (3.0 \times 10^{-12})/[4\pi \varepsilon_0 (5.0 \times 10^{-2})^2]$$
 (= 10.79 N C⁻¹)

M1

at P,
$$E_B = (12 \times 10^{-12})/[4\pi \varepsilon_0 (10 \times 10^{-2})^2]$$
 (= 10.79 N C⁻¹)

M1

or

$$(3.0 \times 10^{-12})/[4\pi\varepsilon_0(5.0 \times 10^{-2})^2] - (12 \times 10^{-12})/[4\pi\varepsilon_0(10 \times 10^{-2})^2] = 0$$
 or $(3.0 \times 10^{-12})/[4\pi\varepsilon_0(5.0 \times 10^{-2})^2] = (12 \times 10^{-12})/[4\pi\varepsilon_0(10 \times 10^{-2})^2]$

(M2)

C1

fields due to charged spheres are (equal and) opposite in direction, so
$$E = 0$$

A1 [3]

(c) potential = $8.99 \times 10^9 \{(3.0 \times 10^{-12})/(5.0 \times 10^{-2}) + (12 \times 10^{-12})/(10 \times 10^{-2})\}$

$$= 1.62 V$$

A1 [2]

(d)
$$\frac{1}{2}mv^2 = qV$$

$$E_{\rm K} = \frac{1}{2} \times 107 \times 1.66 \times 10^{-27} \times v^2$$

C1

$$qV = 47 \times 1.60 \times 10^{-19} \times 1.62$$

C1

$$v^2 = 1.37 \times 10^8$$

$$v = 1.2 \times 10^4 \,\mathrm{m \, s^{-1}}$$

A1 [3]

Р	age s			labus	Pap	er
			Cambridge International AS/A Level – October/November 2016 9702		41	
6	(a)	the	erence to input (voltage) and output (voltage) ere is no time delay between change in input and change in output		B1 B1	[2]
		or				
			erence to rate at which output voltage changes nite rate of change (of output voltage)		(B1) (B1)	
	(b)	(i)	2.00/3.00 = 1.50/R		C1	
			or			
			$V_+ = (3.00 \times 4.5)/(2.00 + 3.00) = 2.7$ 2.7 = 4.5 × $R/(R + 1.50)$		(C1)	
			resistance = $2.25 \mathrm{k}\Omega$		A1	[2]
		(ii)	1. correct symbol for LED		M1	
		('')	two LEDs connected with opposite polarities between V_{OUT} and ear	th	A1	[2]
			2. below 24 °C, R_T > 1.5 kΩ or resistance of thermistor increases/high		B1	
			$V_{-} < V_{+}$ or V_{-} decreases/low (must not contradict initial statement)		M1	
			$V_{\rm OUT}$ is positive/+5 (V) and LED labelled as 'pointing' from $V_{\rm OUT}$ to e	earth	A1	[3]
7	(a)	reg	gion (of space) where a force is experienced by a particle		B1	[1]
	(b)	(i)	gravitational		B1	
		(ii)	gravitational and electric		B1	
		(iii)	gravitational, electric and magnetic		B1	[3]
	(c)	(i)	force (always) normal to direction of motion		M1	
			(magnitude of) force constant			
			or speed is constant/kinetic energy is constant		M1	
			magnetic force provides/is the centripetal force		A1	[3]
		(ii)	$mv^2/r = Bqv$		B1	
			momentum or p or $mv = Bqr$		B1	[2]

P	age 6	Mark Scheme	Syllabus	Pape	: r
		Cambridge International AS/A Level – October/November 2016	9702	41	
8	stron	g <u>uniform</u> magnetic field		B1	
	nucle	precess/rotate about field (direction)		(1)	
	radio-	frequency pulse (applied)		B1	
	R.F.	or pulse is at Larmor frequency/frequency of precession		(1)	
	cause	es resonance/excitation (of nuclei)/nuclei absorb energy		B1	
	on rel	axation/de-excitation, nuclei emit r.f./pulse		B1	
	(emitt	ed) r.f./pulse detected and processed		(1)	
	non-u	niform magnetic field		B1	
	allows	s position of nuclei to be located		B1	
	allows	s for location of detection to be changed/different slices to be studied		(1)	
	any t	vo of the points marked (1)		B2	[8]
9		nduced) e.m.f. proportional to rate f change of (magnetic) flux (linkage)		M1 A1	[2]
	(b) fl	ux linkage = BAN			
		$= \pi \times 10^{-3} \times 2.8 \times \pi \times (1.6 \times 10^{-2})^2 \times 85 = 6.0 \times 10^{-4} \text{ Wb}$		B1	[1]
	(c) e	.m.f. = $\Delta N\Phi/\Delta t$			
		$= (6.0 \times 10^{-4} \times 2)/0.30$		C1	
		$=4.0\mathrm{mV}$		A1	[2]
	(d) s	ketch: $E = 0$ for $t = 0 \rightarrow 0.3$ s, 0.6 s $\rightarrow 1.0$ s, 1.6 s $\rightarrow 2.0$ s		B1	
		$E = 4 \text{ mV for } t = 0.3 \text{ s} \rightarrow 0.6 \text{ s} \text{ (either polarity)}$		B1	
		$E = 2 \text{ mV for } t = 1.0 \text{ s} \rightarrow 1.6 \text{ s}$		B1	
		with opposite polarity		B1	[4]

Pa	age 7	Mark Scheme	Syllabus	Pap	er
	J	Cambridge International AS/A Level – October/November 2016 9702		41	
10	(a)	electromagnetic radiation/photons incident on a surface		B1	
		causes emission of electrons (from the surface)		B1	[2]
	(b)	$E = hc/\lambda$			
		$= (6.63 \times 10^{-34} \times 3.00 \times 10^{8})/(436 \times 10^{-9})$		C1	
		$=4.56\times10^{-19}\mathrm{J}\;(4.6\times10^{-19}\mathrm{J})$		A1	[2]
	(c)	(i) $\Phi = hc/\lambda_0$			
		$\lambda_0 = (6.63 \times 10^{-34} \times 3.00 \times 10^8) / (1.4 \times 1.60 \times 10^{-19})$		C1	
		$= 890 \mathrm{nm}$		A1	[2]
		(ii) $\lambda_0 = (6.63 \times 10^{-34} \times 3.00 \times 10^8) / (4.5 \times 1.60 \times 10^{-19})$			
		= 280 nm		A1	[1]
	. ,	caesium: wavelength of photon less than threshold wavelength (or v.v.)			
		or			
		$\lambda_0 = 890\mathrm{nm} > 436\mathrm{nm}$ so yes		A1	
		tungsten: wavelength of photon greater than threshold wavelength (or v.v.) or			
		$\lambda_0 = 280 \mathrm{nm} < 436 \mathrm{nm}$ so no		A1	[2]
11	in m	etal, conduction band overlaps valence band/no forbidden band/no ban	d gap	B1	
	as te	emperature rises, no increase in number of free electrons/charge carrier	rs	B1	
	as te	emperature rises, lattice vibrations increase		M1	
	(latti	ce) vibrations restrict movement of electrons/charge carriers		M1	
	(cur	rent decreases) so resistance increases		A1	[5]

Α1

[4]

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9702	41

12 (a) (i) time for number of atoms/nuclei or activity to be reduced to one half M1 reference to (number of...) original nuclide/single isotope reference to half of original value/initial activity Α1 [2] (ii) $A = A_0 \exp(-\lambda t)$ and either $t = t_2$, $A = \frac{1}{2}A_0$ or $\frac{1}{2}A_0 = A_0 \exp(-\lambda t_2)$ M1 so $\ln 2 = \lambda t_{1/2}$ (and $\ln 2 = 0.693$), hence $0.693 = \lambda t_{1/2}$ Α1 [2] **(b)** $A = \lambda N$ $N = 200/(2.1 \times 10^{-6})$ C1 $= 9.52 \times 10^7$ C1 mass = $(9.52 \times 10^7 \times 222 \times 10^{-3})/(6.02 \times 10^{23})$ $mass = 9.52 \times 10^7 \times 222 \times 1.66 \times 10^{-27}$ C1 $= 3.5 \times 10^{-17} \text{kg}$