CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the October/November 2014 series

9702 PHYSICS

9702/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2			Mark Scheme Syllabus		Paper	
			Cambridge International AS/A Level – October/November 2014	9702	43	
1	(a)	(i)	either $\omega = 2\pi/T$ or $\omega = 2\pi f$ and $f = 1/T$ $\omega = 2\pi/0.30$		C1	
			= 20.9rad s^{-1} (accept 2 s.f.)		A1	[2]
		(ii)	kinetic energy = $\frac{1}{2}m\omega^2 x_0^2$ or $v = \omega x_0$ and $\frac{1}{2}mv^2$ = $\frac{1}{2} \times 0.130 \times 20.9^2 \times (1.5 \times 10^{-2})^2 = 6.4 \times 10^{-3} \text{ J}$		C1 A1	[2]
	(b)	(i)	as magnet moves, flux is cut by cup/aluminium giving rise to induction (in cup)	ed e.m.f.	B1	
			induced e.m.f. gives rise to currents and heating of the cup thermal energy derived from oscillations of magnet so amplitude de or	ecreases	B1 B1	
			induced e.m.f. gives rise to currents which generate a magnetic field the magnetic field opposes the motion of the magnet so amplitude		(B1) (B1)	[3]
		(ii)	either use of $\frac{1}{2}m\omega^2x_0^2$ and $x_0 = 0.75$ cm or x_0 is halved so $\frac{1}{4}$ energy to give new energy = 1.6 mJ	У	C1	
			either loss in energy = $6.4 - 1.6$ or loss = $\frac{3}{4} \times 6.4$ giving loss = 4.8 r	mJ	A1	[2]
	(c)	4.8	= $mc\Delta\theta$ $3 \times 10^{-3} = 6.2 \times 10^{-3} \times 910 \times \Delta\theta$ $\theta = 8.5 \times 10^{-4} \text{ K}$		C1 A1	[2]
2	(a)		nooth curve with decreasing gradient, not starting at $x = 0$ d of line not at $g = 0$ or horizontal		M1 A1	[2]
	(b)		aight line with positive gradient e starts at origin		M1 A1	[2]
	(c)	on	nusoidal shape ly positive values and peak/trough height constant loops'		B1 B1 B1	[3]
3	(a)	fin ide	tially, $pV/T = (2.40 \times 10^5 \times 5.00 \times 10^{-4})/288 = 0.417$ ally, $pV/T = (2.40 \times 10^5 \times 14.5 \times 10^{-4})/835 = 0.417$ eal gas because pV/T is constant flow 2 marks for two determinations of V/T and then 1 mark for $V/T = 0.000$	and p	M1 M1 A1	[3]

constant, so ideal)

Pa	age (Mark Scheme	Syllabus	Pap	
		-	Cambridge International AS/A Level – October/November 2014	9702	43	
	(b)	(i)	work done = $p\Delta V$ = 2.40 × 10 ⁵ × (14.5 – 5.00) × 10 ⁻⁴ = 228 J (<i>ignore sign, not 2 s.f.</i>)		C1 A1	[2]
		(ii)	$\Delta U = q + w = 569 - 228$ = 341 J increase		M1 A1	[2]
4	(a)	eiti	celeration/force proportional to displacement (from a fixed point) ther acceleration and displacement in opposite directions		M1	
		or	acceleration always directed towards a fixed point		A1	[2]
	(b)	(i)	zero <u>&</u> 0.625 s <i>or</i> 0.625 s <u>&</u> 1.25 s <i>or</i> 1.25 s <u>&</u> 1.875 s <i>or</i> 1.875 s <u>&</u> 2	2.5 s	A1	[1]
		(ii)	1. $\omega = 2\pi/T \text{ and } v_0 = \omega x_0$ $\omega = 2\pi/1.25$		C1	
			= 5.03rad s^{-1} $v_0 = 5.03 \times 3.2$		C1	
			= 16.1 cm s ⁻¹ (allow 2 s.f.)		A1	[3]
			2. $v = \omega \sqrt{(x_0^2 - x^2)}$ either $\frac{1}{2}\omega a = \omega \sqrt{(x_0^2 - x^2)}$ or $\frac{1}{2} \times 16.1 = 5.03 \sqrt{(3.2^2)}$	$-x^2$)	C1	
			$x_0^2/4 = x_0^2 - x^2$ 2.58 = 3.2 ² - x^2 x = 2.8 cm $x = 2.8 cm$,	A1	[2]
	(c)		etch: loop with origin at its centre rect intercepts & shape based on (b)(ii)		M1 A1	[2]
5	(a)		rk done/energy in moving unit positive charge m infinity (to the point)		M1 A1	[2]
	(b)	(i)	$V = q/4\pi\epsilon_0 r$ at 16 kV, $q = 3.0 \times 10^{-8}$ C			
			$r = (3.0 \times 10^{-8})/(4\pi \times 8.85 \times 10^{-12} \times 16 \times 10^{3})$ = 1.69 × 10 ⁻² m (allow 2 s.f.) (allow any answer which rounds to 1.7 × 10 ⁻²)		C1 A1	[2]
		(ii)	energy is/represented by area 'below' line energy = $\frac{1}{2}qV$		C1	
			$= \frac{1}{2} \times 24 \times 10^{3} \times 4.5 \times 10^{-8}$ $= 5.4 \times 10^{-4} \mathrm{J}$		C1 A1	[3]
	(c)	2.0	= $q/4\pi\varepsilon_0 r$ and $E = q/4\pi\varepsilon_0 r^2$ giving $Er = V$ 0 × 10 ⁶ × 1.7 × 10 ⁻² = V = 3.4 × 10 ⁴ V		B1 C1 A1	[3]

Page 4			Syllabus	Pap	
		Cambridge International AS/A Level – October/November 2014	9702	43	
6	(a)	for the two capacitors in parallel, capacitance = 96 μ F for complete arrangement, $1/C_T = 1/96 + 1/48$		C1	101
		$C_{T} = 32\muF$		A1	[2]
	(b)	p.d. across parallel combination is one half p.d. across single capacitor total p.d. = 9 V		C1 A1	[2]
7	(a)	either charge exists in discrete and equal quantities or multiples of elementary charge $/e/1.6 \times 10^{-19}$ C		B1	[1]
	(b)	(i) force due to magnetic field must be upwards B-field into the plane of the paper		B1 B1	[2]
		(ii) sketch showing: deflection consistent with force in (b)(i) reasonable curve		B1 B1	[2]
8	(a)	discrete amount/packet/quantum of energy of electromagnetic radiation/EM radiation		M1 A1	[2]
	(b)	(i) $E = hc/\lambda$ = $(6.63 \times 10^{-34} \times 3.0 \times 10^{8})/(570 \times 10^{-9}) = 3.49 \times 10^{-19} \text{ J}$		A1	[1]
		(ii) 1. number = $(2.7 \times 10^{-3})/(3.5 \times 10^{-19})$ = 7.7×10^{15}		C1 A1	[2]
		2. momentum of photon = h/λ = $(6.63 \times 10^{-34})/(570 \times 10^{-9})$ = $1.16 \times 10^{-27} \text{ kg m s}^{-1}$		C1 C1	
		change in momentum = $1.16 \times 10^{-27} \times 7.7 \times 10^{15}$ = $8.96 \times 10^{-12} \text{kg m s}^{-1}$		A1	[3]
		(allow $E = pc$ route to 9×10^{-12})			[0]
	(c)	pressure = (change in momentum per second)/area = $(8.96 \times 10^{-12})/(1.3 \times 10^{-5})$		C1	
		$= 6.9 \times 10^{-7} \text{ Pa}$		A1	[2]
9	(a)	activity = $(1.7 \times 10^{14})/(2.5 \times 10^{6})$ = $6.8 \times 10^{7} \text{ Bq kg}^{-1}$		A1	[1]
	(b)	(i) energy released per second in 1.0 kg of steel $= 6.8 \times 10^7 \times 0.067 \times 1.6 \times 10^{-13}$ $= 7.3 \times 10^{-7} \text{ J}$		B1	[1]

Pa	age 5		Mark Scheme Syl	labus	Pape	er
		(Cambridge International AS/A Level – October/November 2014 9	702	43	
	((ii)	this is a very small quantity of energy so steel will not be warm		B1	[1]
	(i	iii)	$A = A_0 e^{-\lambda t} \frac{\text{and}}{2} \lambda t_2 = \ln 2$ $400 = (6.8 \times 10^7) \exp(-[\ln 2 \times t]/92)$ t = 1600 years		C1 C1 A1	
			or			
			$A = A_0/2^n$ n = 17.4 $t = 17.4 \times 92 = 1600 \text{ years}$	(O	C1) C1) A1)	[3]
			Section B			
10	(a)	(i)	thermistor/thermocouple		B1	[1]
	((ii)	quartz crystal/piezoelectric crystal or transducer/microphone		B1	[1]
	(b)	(i)	$V_{\rm OUT}$ = -5 V inverting input is positive $or\ V_{-}$ is positive $or\ V_{-}$ > V ₊ so $V_{\rm OUT}$ is negative op-amp has very large/infinite gain and so saturates		A1 B1 B1	[3]
	((ii)	sketch: $V_{\rm OUT}$ switches from (+) to (–) when $V_{\rm IN}$ is zero $V_{\rm OUT}$ is +5 V or –5 V $V_{\rm OUT}$ is negative when $V_{\rm IN}$ is positive (or v.v.)		B1 M1 A1	[3]
11	` ,	der	duct of density and speed nsity of medium, speed of wave in medium t "speed of light", 0/2)		M1 A1	[2]
	(b)	(i)	$\alpha = (6.4 - 1.7)^2/(6.4 + 1.7)^2$ = 0.34		C1 A1	[2]
	((ii)	$I/I_0 = e^{-\mu x}$ = exp (-23 × 3.4 × 10 ⁻²) = 0.46		C1 C1 A1	[3]
	(i	iii)	$I_{R}/I = (0.46)^{2} \times 0.34$ = 0.072		C1 A1	[2]
12			alogue: continuously variable ital: two/distinct levels only <i>or</i> 1 s and 0 s <i>or</i> highs and lows		B1 B1	[2]
	(b)	(i)	5		A1	[1]
	((ii)	1 1 0 1		A1	[1]

Page 6		Mark Scheme		Paper	
		Cambridge International AS/A Level – October/November 2014		43	
	(c)	greater number of voltage/signal levels smaller step heights in reproduced signal smaller voltage/signal changes can be seen		B1 B1 B1	[3]
13	(a)	same carrier frequencies can be re-used but not in neighbouring cells/possible to use more handsets		M1 A1	[2]
	(b)	e.g. wavelength is short so aerial on mobile phone conveniently short		(M1) (A1)	
		e.g. limited range so low power/less interference between cells		(M1) (A1)	
		e.g. large number of channels/greater bandwidth so more simultaneous callers		(M1) (A1)	[4]