9701CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2013 series

9702 PHYSICS

9702/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9702	43

Section A

1	(a)	(a) force proportional to product of the two masses and inversely proportional to the square of their separation either reference to point masses or separation >> 'size' of masses		M1 A1	[2]		
	(b)	<i>GM</i> whe	gravitational force provides the centripetal force $GMm/R^2 = mR\omega^2$ where m is the mass of the planet $GM = R^3\omega^2$				
	(c)		$2\pi / T$ ver $M_{\text{Star}} / M_{\text{Sun}} = (R_{\text{star}} / R_{\text{Sun}})^3 \times (T_{\text{Sun}} / T_{\text{star}})^2$	C1			
		or	$M_{\text{star}} = 4^{3} \times (\frac{1}{2})^{2} \times 2.0 \times 10^{30}$ $= 3.2 \times 10^{31} \text{ kg}$ $M_{\text{star}} = (2\pi)^{2} R_{\text{star}}^{3} / GT^{2}$ $= \{(2\pi)^{2} \times (6.0 \times 10^{11})^{3}\} / \{6.67 \times 10^{-11} \times (2 \times 365 \times 24 \times 3600)^{2}\}$ $= 3.2 \times 10^{31} \text{ kg}$	C1 A1 (C1) (C1) (A1)	[3]		
2	(a)	(i)	sum of kinetic and potential energies of the molecules reference to random distribution	M1 A1	[2]		
		(ii)	for ideal gas, no intermolecular forces so no potential energy (only kinetic)	M1 A1	[2]		
	(b)	(i)	either change in kinetic energy = $3/2 \times 1.38 \times 10^{-23} \times 1.0 \times 6.02 \times 10^{23} \times 180$ = 2240 J	C1 A1	[2]		
			or $R = kN_A$ energy = $3/2 \times 1.0 \times 8.31 \times 180$ = 2240 J	(C1) (A1)			
		(ii)	increase in internal energy = heat supplied + work done on system 2240 = energy supplied – 1500 energy supplied = 3740 J	B1 C1 A1	[3]		
3	(a)		k done bringing unit positive charge n infinity (to the point)	M1 A1	[2]		
	(b)	(i)	either both potentials are positive/same sign so same sign gradients are positive & negative (so fields in opposite directions) so same sign	M1 A1 (M1) (A1)	[2]		
		(ii)	the individual potentials are summed	B1	[1]		
	((iii)	allow value of x between 10 nm and 13 nm	A1	[1]		
	((iv)	$V = 0.43 \text{ V}$ (allow $0.42 \text{ V} \rightarrow 0.44 \text{ V}$) energy = $2 \times 1.6 \times 10^{-19} \times 0.43$ = $1.4 \times 10^{-19} \text{ J}$	M1 A1 A1	[3]		

Page 3	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – October/November 2013	9702	43

4 (a) e.g. store energy (do not allow 'store charge')

in smoothing circuits

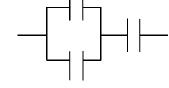
blocking d.c.

in oscillators

any sensible suggestions, one each, max. 2

B2 [2]

(b) (i) potential across each capacitor is the same and Q = CV


B1 [1]

(ii) total charge $Q = Q_1 + Q_2 + Q_3$ $CV = C_1V + C_2V + C_3V$ (allow Q = CV here or in (i)) so $C = C_1 + C_2 + C_3$

M1 M1

Α0 [2]

(c) (i)

Α1 [1]

Α1 [1]

5 (a) (i) region (of space)

either where a moving charge (may) experience a force

around a magnet where another magnet experiences a force

В1 [1]

(ii) $(\Phi =) BA \sin \theta$

- Α1 [1]
- (b) (i) plane of frame is always parallel to B_V /flux linkage always zero
- **B**1 [1]

(ii) $\Delta \Phi = 1.8 \times 10^{-5} \times 52 \times 10^{-2} \times 95 \times 10^{-2}$ $= 8.9 \times 10^{-6} \text{ Wb}$

C1 **A1** [2]

(c) (i) (induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage) (allow rate of cutting of flux)

M1 Α1 [2]

(ii) e.m.f. = $(8.9 \times 10^{-6}) / 0.30$ $= 3.0 \times 10^{-5} \text{ V}$

- Α1 [1]
- (iii) This question part was removed from the assessment. All candidates were awarded 1 mark.
- **B1** [1]

Page 4	Mark Scheme	Syllabus	Paper	
	GCE A LEVEL – October/November 2013	9702	43	

6 (a) either constant speed parallel to plate or accelerated motion/force normal to plate/in direction field **B1** so not circular Α0 [1] (b) (i) direction of force due to magnetic field opposite to that due to electric field **B1 B1** [2] magnetic field into plane of page (ii) force due to magnetic field = force due to electric field **B1** Bav = aEB = E/vC1 $= (2.8 \times 10^4) / (4.7 \times 10^5)$ $= 6.0 \times 10^{-2} \text{ T}$ Α1 [3] **B1** [1] (c) (i) no change/not deviated (ii) deviated upwards **B1** [1] (iii) no change/not deviated B1 [1] 7 (a) (i) minimum photon energy **B1** minimum energy to remove an electron (from the surface) B1 [2] (ii) either maximum KE is photon energy – work function energy max KE when electron ejected from the surface **B1** energies lower than max because energy required to bring electron to the surface B1 [2] **(b)** (i) threshold frequency = 1.0×10^{15} Hz (allow $\pm 0.05 \times 10^{15}$) C1 work function energy = hf_0 C1 $= 6.63 \times 10^{-34} \times 1.0 \times 10^{15}$ $= 6.63 \times 10^{-19} \text{ J}$ A1 [3] (allow alternative approaches based on use of co-ordinates of points on the line) (ii) sketch: straight line with same gradient M1 displaced to right [2] Α1 (iii) intensity determines number of photons arriving per unit time B1 intensity determines number of electrons per unit time (not energy) B1 [2] (a) probability of decay (of a nucleus)/fraction of number of nuclei in sample 8 M1 that decay per unit time Α1 [2] (allow $\lambda = (dN / dt) / N$ with symbols explained – (M1), (A1) **(b) (i)** number = $(1.2 \times 6.02 \times 10^{23}) / 235$ C1 $= 3.1 \times 10^{21}$ A1 [2]

	Page 5				Syllabus	Paper	•		
				GCE A LEVEL – October/November 2013	9702	43			
		(ii)	negl	$N_0 e^{-\lambda t}$ igible activity from the krypton		B1			
		for barium, $N = (3.1 \times 10^{21}) \exp(-6.4 \times 10^{-4} \times 3600)$ = 3.1×10^{20} activity = λN							
				$= 6.4 \times 10^{-4} \times 3.1 \times 10^{20}$ $= 2.0 \times 10^{17} \text{ Bq}$		C1 A1	[4]		
				Section B					
9	(a)	e.g.	infini infini infini	output impedance/resistance ite input impedance/resistance ite (open loop) gain ite bandwidth ite slew rate					
		(1 e		max. 3)		В3	[3]		
	(b)	(i)	gain	= 1 + (10.8 / 1.2) = 10		C1 A1	[2]		
		(ii)	horiz	th: straight line from (0,0) towards V_{IN} = 1.0 V, V_{OUT} = 1 zontal line at V_{OUT} = 9.0 V to V_{IN} = 2.0 V ect +9.0 V \rightarrow -9.0 V (and correct shape to V_{IN} = 0)	0 V	B1 B1 B1	[3]		
10	(a)	spir	n/prė	oin/precess cess about direction of magnetic field requency of precession depends on magnetic field stre	nath	B1 B1			
		or		arge field means frequency in radio frequency range	11941	B1	[3]		
	(b)	o) non-uniform field means frequency of precession different in different regions of subject enables location of precessing nuclei to be determined enables thickness of slice to be varied/location of slice to be changed							
11	(a)	(i)		er series of 'highs' and 'lows' or two discrete values no intermediate values		M1 A1	[2]		
		(ii)	_	noise can be eliminated (NOT 'no noise') signal can be regenerated addition of extra data to check for errors larger data carrying capacity					
				cheaper circuits more reliable circuits (any three, 1 each)		В3	[3]		

	Page 6			Mark Scheme	Syllabus		Paper	
				GCE A LEVEL – October/November 2013	9702	43		
	(b)	(i)	1 . a	mplifier		B1	[1]	
			2. d	igital-to-analogue converter (allow DAC)		B1	[1]	
		(ii)		ut of ADC is number of digits all at one time llel-to-serial sends digits one after another		B1 B1	[2]	
12	(a)	e.g.	large	ittle ionospheric reflection e information carrying capacity two sensible suggestions, 1 each)		B2	[2]	
	(b)	•		(very) low power signal received at satellite ramped by high-power transmitted signal		M1 A1	[2]	
	(c)	atte	enuati	on/dB = $10 \lg(P_2/P_1)$ $185 = 10 \lg({3.1 \times 10^3}/P)$ $P = 9.8 \times 10^{-16} \text{ W}$		C1 C1 A1	[3]	