MARK SCHEME for the October/November 2012 series

9702 PHYSICS

9702/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Do	<u>ao 7</u>)	Mark Scheme	Syllabus	Paper	.
	Page 2			GCE AS/A LEVEL – October/November 2012	9702	43	
				Section A			
1	(a)	(i)	num	iber of molecules		B1	[1]
		(ii)	mea	an square speed		B1	[1]
	(b)	(i)		pV = nRT $n = (6.1 \times 10^5 \times 2.1 \times 10^4 \times 10^{-6}) / (8.31 \times 285)$ n = 5.4 mol		C1 C1 A1	[3]
				either $N = nN_A$ = 5.4 × 6.02 × 10 ²³ = 3.26 × 10 ²⁴ or pV = NkT $N = (6.1 × 10^5 × 2.1 × 10^4 × 10^{-6}) / (1.38 × 10^{-23} × 285)$		C1 A1 (C1)	
				$N = (0.1 \times 10^{-2.1} \times 10^{-10} \times 10^{-10}) / (1.38 \times 10^{-2.23})$ $N = 3.26 \times 10^{24}$		(C1) (A1)	[2]
		(ii)	<c2></c2>	er $6.1 \times 10^5 \times 2.1 \times 10^{-2} = \frac{1}{3} \times 3.25 \times 10^{24} \times 4 \times 1.66 \times$ > = 1.78 × 10 ⁶ $_{3} = 1.33 \times 10^{3} \text{ m s}^{-1}$	10 ⁻²⁷ × < <i>c</i> ² >	C1 C1 A1	
			¹ / ₂ × < <i>c</i> ² >	$4 \times 1.66 \times 10^{-27} \times \langle c^2 \rangle = {}^{3}/_{2} \times 1.38 \times 10^{-23} \times 285$ > = 1.78 × 10 ⁶ $_{3}$ = 1.33 × 10 ³ m s ⁻¹		(C1) (C1) (A1)	[3]
2	(a)	(i)	1.	0.1 s, 0.3 s, 0.5 s, etc (<i>any two</i>)		A1	[1]
				either 0, 0.4s, 0.8s, 1.2s or			
				0.2 s, 0.6 s, 1.0 s (<i>any two</i>)		A1	[1]
		(ii)	•	od = 0.4 s uency = (1/0.4 =) 2.5 Hz		C1 A1	[2]
		(iii)	pha	se difference = 90 ° or $\frac{1}{2}\pi$ rad		B1	[1]
	(b)	frec	quenc	cy = 2.4 – 2.5 Hz		B1	[1]
	(c)	inci e.g	rease . redu	ch sheet of card to trolley s damping / frictional force uce oscillator amplitude power/energy input to system		M1 A1 (M1) (A1)	[2]

	Pa	age 3			Ma	rk Scheme	Syllabus	Paper	-
		GCE AS/A LEVEL – October/November 2012 9702				43			
3	(a)	(i)	(tan	gent to line gives) di	rec	tion of force on a (small test) m	ass	B1	[1]
	(-)	.,		,		· · · · ·			
		(ii)	•	gent to line gives) di ge is positive	rec	tion of force on a (small test) cl	narge	M1 A1	[2]
	(b)	e.g line gre field (<i>all</i>	es nor ater s d stre ow ar erenc	al fields mal to surface separation of lines w ngth \propto 1 / (distance by sensible answer) se:	to		9	В1	
		-	-	ritational force (alwa	• •	towards sphere on sign of charge on sphere / 1	owards or	B1	
		awa	ay fro	m sphere				B1	
		-	-	ritational field/force i ield/force is attractiv				(B1) (B1)	
				ny sensible comparis		•			[3]
	(c)	gra	vitatio	onal force = 1.67 × 1 = 1.6 × 10	0 ⁻² -26	⁷ × 9.81		A1	
		ele	ctric f	orce = 1.6 × 10 ⁻¹⁹ ×				C1	
		مام	ctric f	$= 2.4 \times 10^{-15} \text{ N}$	ator	r than gravitational force		A1 B1	[4]
		CIC		orce very much grea	ater	than gravitational lorce		ы	[+]
4	(a)	ford	ce on	proton is normal to	velo	ocity and field		M1	
		pro	vides	centripetal force (fo	r ci	ircular motion)		A1	[2]
	(b)			c force = <i>Bqv</i>				B1	
		cer v=	•	al force = $mr\omega^2$ or r	nv^2	lr		B1 B1	
				$qr\omega = mr\omega^2$				DI	
		ω=	Bq/n	n				A1	[4]
5	(a)	eith	ner d:	= BA sin <i>θ</i>				M1	
Ũ	(u)			is the area (through	wł	nich flux passes)			
			s the	angle between <i>B</i> an	d (plane of) A		A1	
		or φ =	BA					(M1)	
		'		is area normal to B				(A1)	[2]
	(b)	gra	ph: V	$'_{\rm H}$ constant and non	zer	o between the poles and zero o	outside	M1	
	. ,			crease/decrease at e				A1	[2]

	Pa	ge 4	Mark Scheme	Syllabus	B Paper	
			GCE AS/A LEVEL – October/Novembe	r 2012 9702	43	
	(c)	(i)	(induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage)		M1 A1	[2]
		(ii)	short pulse on entering and on leaving region be pulses approximately the same shape but oppos e.m.f. zero between poles and outside	•	M1 A1 A1	[3]
6	(a)	(i)	connection to 'top' of resistor labelled as positive		B1	[1]
		(ii)	diode B and diode D		B1	[1]
	(b)	(i)	$V_{\rm P} = 4.0 \rm V$ mean power = $V_{\rm P}^2/2R$ = $4^2 / (2 \times 2700)$		C1 C1	
			$= 2.96 \times 10^{-3} W$		A1	[3]
		(ii)	capacitor, correct symbol, connected in parallel v	vith R	B1	[1]
	(c)	-	oh: half-wave rectification ne period and same peak value		M1 A1	[2]
7	(a)		velength associated with a particle is moving		M1 A1	[2]
	(b)	(i)	kinetic energy = $1.6 \times 10^{-19} \times 4700$ = 7.52×10^{-16} J		C1	
			either energy = $p^2/2m$ or $E_{\rm K} = \frac{1}{2}mv^2$ and $p = mv$ $p = \sqrt{(7.52 \times 10^{-16} \times 2 \times 9.1 \times 10^{-31})}$ = 3.7 × 10 ⁻²³ N s		C1 C1	
			$\lambda = h/p$		C1	
			= $(6.63 \times 10^{-34}) / (3.7 \times 10^{-23})$ = 1.8×10^{-11} m		A1	[5]
		(ii)	wavelength is about separation of atoms can be used in (electron) diffraction		B1 B1	[2]
8	(a)	(i)	<i>x</i> = 2		A1	[1]
		(ii)	either beta particle or electron		B1	[1]
	(b)	(i)	= 236.931 u	3 × 1.009)} u	C1 C1	
			binding energy = 236.931 u – 235.123 u = 1.808 u		A1	[3]

PMT

	Pa	ge 5	Mark Scheme Syllab	us Pape	er l
	10	300	GCE AS/A LEVEL – October/November 2012 9702		- 1
		(ii)	$E = mc^2$	C1	
			energy = $1.808 \times 1.66 \times 10^{-27} \times (3.0 \times 10^{8})^{2}$ = 2.7×10^{-10} J binding energy per nucleon = $(2.7 \times 10^{-10}) / (235 \times 1.6 \times 10^{-13})$ = 7.18 MeV	C1 M1 A0	[3]
	(c)	ene	ergy released = (95 × 8.09) + (139 × 7.92) – (235 × 7.18) = 1869.43 – 1687.3 = 182 MeV	C1 A1	[2]
		(alle	ow calculation using mass difference between products and reactants		[ک]
			Section B		
9	(a)	ligh	t-emitting diode (allow LED)	B1	[1]
	(b)	•	es a high or a low output / +5V or –5V output bendent on which of the inputs is at a higher potential	M1 A1	[2]
	(c)	(i)	provides a reference/constant potential	B1	[1]
		(ii)	determines temperature of 'switch-over'	B1	[1]
	(d)	(i)	relay	A1	[1]
		(ii)	relay connected correctly for op-amp output and high-voltage circuit diode with correct polarity in output from op-amp	B1 B1	[2]
10	(a)	bac	kground reading = 19	B1	[1]
	(b)	A = B =		A1 A1	
		C =	9	A1	
		D = (All	: 3 ow 1 mark if only subtracts background reading)	A1	[4]
	(c)	(i)	<i>either</i> 5, 14 <i>or</i> 14, 5 (A+D, B+C or <i>v.v.</i>)	B1	[1]
		(ii)	Three numbers and 'inside' number is 8 (B+D) Three numbers and 'outside' numbers are <i>either</i> 2,9 <i>or</i> 9,2 (A,C or <i>v</i> .	B1 .v.) B1	[2]
11	(a)	the	h frequency wave amplitude or the frequency is varied	B1 M1	
			variation represents the information signal / synchrony with (the displacement of) the information signal.	A1	[3]

Page 6	Mark Scheme	Syllabus	Paper	•
	GCE AS/A LEVEL – October/November 2012	9702	43	
longer t allows r less dis	orter aerial required ransmission range / lower transmitter power / less atter nore than one station in a region tortion <i>ny three sensible suggestions, 1 mark each</i>)	uation	В3	[3]
2 (a) (i) e.g	. linking a (land) telephone to the (local) exchange		B1	[1]
(ii) e.g	. connecting an aerial to a television		B1	[1]
(iii) e.g	linking a ground station to a satellite		B1	[1]
tota 84 <i>P</i> =	enuation = $10 \log (P_2 / P_1)$ al attenuation = 2.1×40 (= $84 dB$) = $10 \log (\{450 \times 10^{-3}\} / P)$ = $1.8 \times 10^{-9} W$ swer $1.1 \times 10^8 W$ scores 1 mark only)		C1 C1 A1	[3]
(ii) ma	ximum attenuation = $10 \log (\{450 \times 10^{-3}\} / \{7.2 \times 10^{-11}\})$ = $98 dB$ ximum length = $98/2.1$ = 47 km		C1 A1	[2]