CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2012 series

9702 PHYSICS

9702/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9702	41

Section A

1	inv	ce is proportional to the product of the masses and ersely proportional to the square of the separation ner point masses or separation >> size of masses	M1 A1	[2]
	(b) (i)	gravitational force provides the centripetal force $mv^2/r = GMm/r^2$ and $E_K = \frac{1}{2}mv^2$ hence $E_K = GMm/2r$	B1 M1 A0	[2]
	(ii)	1. $\Delta E_{\rm K} = \frac{1}{2} \times 4.00 \times 10^{14} \times 620 \times (\{7.30 \times 10^6\}^{-1} - \{7.34 \times 10^6\}^{-1})$ = 9.26 × 10 ⁷ J (ignore any sign in answer) (allow 1.0 × 10 ⁸ J if evidence that $E_{\rm K}$ evaluated separately for each r)	C1 A1	[2]
		2. $\Delta E_P = 4.00 \times 10^{14} \times 620 \times (\{7.30 \times 10^6\}^{-1} - \{7.34 \times 10^6\}^{-1})$ = 1.85 × 10 ⁸ J (ignore any sign in answer) (allow 1.8 or 1.9 × 10 ⁸ J)	C1 A1	[2]
	(iii)	either $(7.30 \times 10^6)^{-1}$ – $(7.34 \times 10^6)^{-1}$ or ΔE_K is positive/E _K increased speed has increased	M1 A1	[2]
2	(a) (i)	sum of potential energy and kinetic energy of atoms/molecules/particles reference to random	M1 A1	[2]
	(ii)	no intermolecular forces no potential energy internal energy is kinetic energy (of random motion) of molecules (reference to random motion here then allow back credit to (i) if M1 scored)	B1 B1 B1	[3]
	` , eitl	etic energy ∞ thermodynamic temperature ner temperature in Celsius, not kelvin so incorrect remperature in kelvin is not doubled	B1 B1	[2]
3		nperature of the spheres is the same (net) transfer of energy between the spheres	B1 B1	[2]
	(b) (i)	power = $m \times c \times \Delta\theta$ where m is mass per second $3800 = m \times 4.2 \times (42 - 18)$ $m = 38 \mathrm{g s^{-1}}$	C1 C1 A1	[3]
	(ii)	some thermal energy is lost to the surroundings so rate is an overestimate	M1 A1	[2]
4	sho neo	aight line through origin ows acceleration proportional to displacement gative gradient ows acceleration and displacement in opposite directions	M1 A1 M1 A1	[4]

	Page 3 Mark Scheme Sylla		Syllabus	•			
				GCE AS/A LEVEL – October/November 2012	9702	41	
	(b)	(i)	2.8 c	em		A1	[1]
		(ii)	grad	er gradient = ω^2 and $\omega = 2\pi f$ or $a = -\omega^2 x$ and $\omega = 2\pi f$ lient = 13.5/(2.8 × 10 ⁻²) = 482		C1	
				22 rad s ⁻¹		C1	
			frequ	uency = $(22/2\pi =) 3.5 Hz$		A1	[3]
	(c)	_		er spring may not be extended er spring may exceed limit of proportionality/elastic limit			
		(an	y sen	sible suggestion)		B1	[1]
5	(a)	(i)		of charge and potential (difference)/voltage o must be clear)		B1	[1]
			(rativ	made se diedi',		5.	۲٠,
		(ii)		acitor has equal magnitudes of (+)ve and (-)ve charge charge on capacitor is zero (so does not store charge)		B1 B1	
				e and (-)ve charges to be separated		M1	
			work	done to achieve this so stores energy		A1	[4]
	(b)	(i)		acitance of Y and Z together is 24 μF		C1	
				= 1/24 + 1/12 8.0 μF (<i>allow</i> 1 s.f.)		A1	[2]
		(ii)	som	e discussion as to why all charge of one sign on one pla	te of X	B1	
			Q = = 72	$(CV =) 8.0 \times 10^{-6} \times 9.0$		M1 A0	[2]
				•		, 10	[-]
		(iii)		$V = (72 \times 10^{-6})/(12 \times 10^{-6})$ = 6.0\/ (2\form 1.5.f.) (2\form 72\form 12)		A1	[4]
				= 6.0 V (<i>allow</i> 1 s.f.) (allow 72/12)		AI	[1]
				<i>either</i> Q = 12 × 10 ⁻⁶ × 3.0 <i>or</i> charge is shared between ` charge = 36 μC	Y and Z	C1 A1	[2]
				Must have correct voltage in (iii)1 if just quote of $36\mu C$ in	n (iii) 2.	Ai	[2]
6	(a)	(i)	parti	cle must be moving		M1	
	(-,	(-)	•	component of velocity normal to magnetic field		A1	[2]
		(ii)		B qv sin $ heta$ and $ heta$ explained		M1 A1	[0]
			q, v	and bexplained		AI	[2]
	(b)			BCGF shaded		A1	[1]
		(ii)	betw	veen face BCGF and face ADHE		A1	[1]
	(c)			difference gives rise to an electric field		M1	
				= qE (no need to explain symbols) c field gives rise to force (on an electron)		A1	[2]
		J, (o note gives has to lords (on an election)		, , , ,	[-]

	Page 4				Mark					S	yllabus	5	Paper		
				GCE	AS/A	LEVEL - (Octob	er/Nov	ember	2012		9702		41	
7	(a)			e.m.f./cui e the cha		roduces eff ausing it	ects/	acts in	such a	direction	/ten	ds		M1 A1	[2]
	(b)	(i)		o reduce agnetise		losses/in	crease	e flux	linkage	e/easily	maç	gnetised	<u>and</u>	B1	[1]
		2. to <u>reduce</u> energy/heat losses (do not allow 'to prevent energy losses') caused by eddy currents (allow 1 mark for 'reduce eddy currents')						M1 A1	[2]						
		(ii)	give:	links the	chang second	ing) flux in		uces e	m.f. (in	seconda	ary co	oil)		B1 B1 M1 A1	[4]
8	(a)					t/quantum ck constan				magnetic	c radi	ation		B1 B1	[2]
	(b)	rate max max	e of er k. kind k. kind	etic energ	proposition proposition in propositi	ortional to indectron dependent of 3)	ender	nt on fr	equenc	y	((1) (1) (1) (1)		В3	[3]
	(c)			= <i>hc/λ</i> nm to give	<u>α</u>			$hc/\lambda =$	eV tion of 3	3.5 eV				C1	
		ene	rgy =	4.4 × 10 3.5 eV so	⁻¹⁹ or 2		to	give λ	= 355 n 450 nm	m				M1 A1	[3]
		thre	shold nm =	function = d frequen = 6.67×10 0 ¹⁴ Hz < 8	cy = 8.) ¹⁴ Hz	45×10 ¹⁴ Hz	<u>.</u>							C1 M1 A1	

Page 5	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9702	41

Section B

9	(a)	infir infir infir	zero output impedance/resistance nite input impedance/resistance nite (open loop) gain nite bandwidth nite slew rate			
		1 e	ach, max. 3		В3	[3]
	(b)	(i) (ii)	graph: square wave correct cross-over points where $V_2 = V_1$ amplitude 5 V correct polarity (positive at $t = 0$) correct symbol for LED diodes connected correctly between V_{OUT} and earth correct polarity consistent with graph in (i) (R points 'down' if (i) correct)		M1 A1 A1 A1 M1 A1	[4] [3]
10	of call i ima ima ima tha	one s mag iges iges ige fo ige fo	es in the same plane combined to give image of section/slice of successive sections/slices combined ormed using a computer ormed is 3D image	(1) (1) (1) (1)	B1 B1 B1 B1	[6]
11		extr mul digi data	noise can be eliminated/filtered/signal can be regenerated to bits can be added to check for errors tiplexing possible tal circuits are more reliable/cheaper a can be encrypted for security sensible advantages, 1 each, max. 3 1. higher frequencies can be reproduced 2. smaller changes in loudness/amplitude can be detected bit rate = 44.1 × 10 ³ × 16		B3 B1 B1 C1	[3] [1] [1]
			$= 7.06 \times 10^{5} \text{ s}^{-1}$ number = $7.06 \times 10^{6} \times 340$ = 2.4×10^{8}		A1	[2]
12	(a)	(i)	signal in one wire (pair) is picked up by a neighbouring wire (pair)		B1	[1]
		(ii)	outer of coaxial cable is earthed outer shields the core from noise/external signals		B1 B1	[2]

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2012	9702	41

(b) attenuation per unit length = $1/L \times 10 \lg(P_2/P_1)$ signal power at receiver = $10^{2.5} \times 3.8 \times 10^{-8}$	C1
$= 1.2 \times 10^{-5} \text{W}$	C1
attenuation in wire pair = $10 \log((3.0 \times 10^{-3})/(1.2 \times 10^{-5}))$ = $24 dB$	C1
attenuation per unit length = 24/1.4	O1
= 17 dB km ⁻¹ (other correct methods of calculation are possible)	A1 [4]