UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

9702 PHYSICS

9702/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2			Mark Scheme	: Teachers'	version	Syllabus	Paper		
				GCE AS/A LEVEL – October/November 2011 9702			43		
	Section A								
1	(a)	(i)	weight = <i>GM</i> = (6.6 = 5.20	7 × 10 ¹¹ × 6.4	2 × 10 ²³ × 1.	40)/(½ × 6.79 ×	10 ⁶) ²	C1 C1 A1	[3]
		(ii)	potential ener	$gy = -GMm/r = -(6.67 \times = -1.77 \times $: 10 ¹¹ × 6.42	2 × 10 ²³ × 1.40)/(1⁄2 × 6.79 × 10 ⁶)	C1 M1 A0	[2]
	(b)	eith or	$\frac{1}{2}mv^{2} = v^{2} = (2 \times 10^{2})$	7 × 10 ⁷ × 2)/1 × 10 ³ m s ¹		(6.79 × 10 ⁶ /2)		C1 C1 (C1) (C1) (A1)	[3]
	(c)	(i)	½ × 2 × 1.66 × T = 2030 K	< 10 ²⁷ × (5.03	$(\times 10^3)^2 = \frac{3}{2}$	³ / ₂ × 1.38 × 10 ²³	×T	C1 A1	[2]
		(ii)	some or some of	se there is a ra molecules have escape from pe al potential ene	e a higher sp pint above pl	beed anet surface		M1 A1 (M1) (A1)	[2]
2	(a)	tem	perature	e calibrated aries linearly w	_	linear change ure	of property	with B1 B1	[2]
	(b)	(i)	does not depe	end on the prop	perty of a sul	ostance		B1	[1]
		(ii)	temperature a	t which atoms	have minim	um/zero energy		B1	[1]
	(c)	(i)	323.15 K					A1	[1]
		(ii)	30.00 K					A1	[1]

	Page 3		Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – October/November 2011	9702	43	
3	(a)		celeration proportional to displacement/distance from fixed point ad in opposite directions/directed towards fixed point		M1 A1	[2]
	(b)	ene	rgy = $\frac{1}{2}m\omega^2 x_0^2$ and $\omega = 2\pi f$ = $\frac{1}{2} \times 5.8 \times 10^{-3} \times (2\pi \times 4.5)^2 \times (3.0 \times 10^{-3})^2$ = 2.1 × 10 ⁻⁵ J		C1 C1 A1	[3]
	(c)	(i)	at maximum displacement above rest position		M1 A1	[2]
			acceleration = $(-)\omega^2 x_0$ and acceleration = 9.81 or g		C1	
			9.81 = $(2\pi \times 4.5)^2 \times x_0$ $x_0 = 1.2 \times 10^2 \text{ m}$		A1	[2]
4	(a)	-	storing energy separating charge blocking d.c. producing electrical oscillations tuning circuits smoothing preventing sparks timing circuits <i>/ two sensible suggestions, 1 each, max 2</i>)		В2	[2]
		(arry			DE	[~]
	(b)	(i)	-Q (induced) on opposite plate of C ₁ by <u>charge conservation</u> , charges are $-Q$, $+Q$, $-Q$, $+Q$, $-Q$		B1 B1	[2]
		(ii)	total p.d. $V = V_1 + V_2 + V_3$ $Q/C = Q/C_1 + Q/C_2 + Q/C_3$ $1/C = 1/C_1 + 1/C_2 + 1/C_3$		B1 B1 A0	[2]
	(c)	(i)	energy = $\frac{1}{2}CV^2$ or energy = $\frac{1}{2}QV$ and $C = Q/V$ = $\frac{1}{2} \times 12 \times 10^6 \times 9.0^2$		C1	
			= $4.9 \times 10^{-4} \text{ J}$		A1	[2]
		(ii)	energy dissipated in (resistance of) wire/as a spark		B1	[1]

	Page 4		Ļ	Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE AS/A LEVEL – October/November 2011	9702	43	
5	(a)			onnected correctly (to left & right) nected correctly (to top & bottom)		B1 B1	[2]
	(b)	•	. pow grea y sen	B1	[1]		
	(c)	(i)	redu	iction in the variation of the output voltage/current		B1	[1]
		(ii)		er capacitance produces more smoothing		M1	
			eithe or	er product <i>RC</i> larger for the same load		A1	[2]
6	(a)	field	d nori	agnetic flux density mal to (straight) conductor carrying current of 1 A r unit length is 1 N m ¹		B1 M1 A1	[3]
	(b)	(i)	(and	e on particle always normal to direction of motion I speed of particle is constant)		M1	
			mag	netic force provides the centripetal force		A1	[2]
		(ii)	i) $mv^2/r = Bqv$ r = mv/Bq			M1 A0	[1]
	(c)	(i)		momentum/speed is becoming less ne radius is becoming smaller		M1 A1	[2]
		(ii)		spirals are in opposite directions so oppositely charged		M1 A1	[2]
				equal <u>initial</u> radii so equal (initial) speeds		M1 A1	[2]

	Page 5		5		Mark Scheme: Teachers' ve	rsion	Syllabus	Paper	
				GC	AS/A LEVEL – October/Nove	ember 2011	9702	43	
7	(a)	(i)			tum of energy agnetic radiation			M1 A1	[2]
		(ii)	<u>mini</u>	<u>mum</u> e	ergy to cause emission of an e	lectron (from sı	urface)	B1	[1]
	(b)	(i)		$f = \Phi + $ id <i>h</i> exp				M1 A1	[2]
		(ii)	1.	or or	when $1/\lambda = 0$, $\Phi = -E_{max}$ evidence of use of <i>x</i> -axis interc chooses point close to the line E_{max} into $hc/\lambda = \Phi + E_{max}$ 0×10^{-19} J (allow ±0.2 × 10 ⁻¹⁹ J)	and substitute	s values of 1/ λ a	and C1 A1	[2]
			2.	either	gradient of graph is $1/hc$ gradient = 4.80 × $10^{24} \rightarrow 5.06$ h = 1/(gradient × 3.0 × 10^8)	× 10 ²⁴		C1 M1	
			(Do	not all	= $6.6 \times 10^{-34} \text{ Js} \rightarrow 6.9 \times 10^{-34} \text{ Js}$ chooses point close to the line E_{max} into $hc/\lambda = \Phi + E_{\text{max}}$ values of $1/\lambda$ and E_{max} are correct $h = 6.6 \times 10^{-34} \text{ Js} \rightarrow 6.9 \times 10^{-34} \text{ Js} \rightarrow 6.9 \times 10^{-34} \text{ Js} \rightarrow 6.9 \times 10^{-34} \text{ Js}$ redit for the correct use of any are w 'circular' calculations in par stant that was substituted in par	and substitutes ect within half a) ³⁴ J s appropriate met t 2 that lead to	square hod)	(C1) (M1) (A1)	[3]
8	(a)	(i)	-	bability unit tim	f decay (of a nucleus)			M1 A1	[2]
		(ii)	$\lambda =$	= In 2 In 2/(3 .1 × 10	82 × 24 × 3600) ³ s ¹			M1 A0	[1]
	(b)	200 N =	= 9.5	2.1 × 10 5 × 10 ⁷				C1 C1	
		rati	o = =	(2.5 × 2.6 × 1	0 ²⁵)/(9.5 × 10 ⁷) ¹⁷			A1	[3]

	Page 6	Mark Scheme: Teachers' version Syllat		Paper					
		GCE AS/A LEVEL – October/November 2011	9702	43					
	Section B								
9	(a) any valu	le greater than, or equal to, $5 k\Omega$		B1	[1]				
	(b) (i) 'pos	sitive' shown in correct position		B1	[1]				
	V gree (allo	= $(500/2200) \times 4.5$ $\approx 1 V$ > V^+ so output is negative en LED on, (red LED off) ow full ecf of incorrect value of V^+) er V^+ increases or $V^+ > V$ en LED off, red LED on		B1 M1 A1 M1 A1	[3]				
10	quartz/piezo p.d. across o alternating p crystal cut to when crystal alternating p	o move brate	B1 B1 B1 M1 A1	[6]					
11	(a) sharpne contrast	•	ures	B1 B1	[2]				
	(b) (i) I = I/I ₀	$I_0 e^{\mu x}$ = exp(-0.20 × 8) = 0.20		C1 A1	[2]				
	I/I_0	= $\exp(-\mu_1 \times x_1) \times \exp(-\mu_2 \times x_2)$ (could be three terms) = $\exp(-0.20 \times 4) \times \exp(-12 \times 4)$ = 6.4×10^{-22} or $I/I_0 \approx 0$)	C1 C1 A1	[3]				
	(c) (i) sha	rpness unknown/no		B1	[1]				
	(ii) con	trast good/yes <i>(ecf from (b))</i>		B1	[1]				

Pa	nge 7	Mark Scheme: Teachers' version	Syllabus	Paper	
		GCE AS/A LEVEL – October/November 2011	9702	43	
12 (a)	so ir e.g. lowe so le e.g. UHF so m	<u>er</u> frequencies can be re-used (without interference) acreased number of handsets can be used er power transmitters ess interference ⁱ used nust be line-of-sight/short handset aerial <i>sensible suggestions with explanation, max 4</i>)		(M1) (A1) (M1) (A1) (M1) (A1) B4	[4]
(b)	monitors relayed f	r at cellular exchange the signal power rom several base stations call to base station with strongest signal		B1 B1 B1 B1	[4]