UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

9702 PHYSICS

9702/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2			Paper	•		
			GCE AS/A LEVEL – October/November 2011 9702	42			
	Section A						
1	(a)	GM	vitational force provides the centripetal force $Im/r^2 = mr\omega^2$ (must be in terms of ω) $r^2 = GM$ and GM is a constant	B1 B1 B1	[3]		
	(b)	(i)	1. for Phobos, $\omega = 2\pi/(7.65 \times 3600)$ = 2.28 × 10 ⁴ rad s ⁻¹	C1			
			$(9.39 \times 10^{6})^{3} \times (2.28 \times 10^{-4})^{2} = 6.67 \times 10^{-11} \times M$ $M = 6.46 \times 10^{23} \text{ kg}$	C1 A1	[3]		
			2. $(9.39 \times 10^{6})^{3} \times (2.28 \times 10^{-4})^{2} = (1.99 \times 10^{7})^{3} \times \omega^{2}$ $\omega = 7.30 \times 10^{-5} \text{ rad s}^{-1}$ $T = 2\pi/\omega = 2\pi/(7.30 \times 10^{-5})$	C1 C1			
			= 8.6×10^4 s = 23.6 hours	A1	[3]		
		(ii)	<i>either</i> almost 'geostationary' <i>or</i> satellite would take a long time to cross the sky	B1	[1]		
2	(a)	e.g	. moving in random (rapid) motion of <u>molecules/atoms/particles</u> no intermolecular forces of attraction/repulsion volume of <u>molecules/atoms/particles</u> negligible <u>compared</u> to volume of container	of			
		(1 6	time of collision negligible to time between collisions each, max 2)	B2	[2]		
	(b)	(i)	1. number of (gas) molecules	B1	[1]		
			2. mean square speed/velocity (of gas molecules)	B1	[1]		
		(ii)	either $pV = NkT$ or $pV = nRT$ and links <i>n</i> and <i>k</i> and $\langle E_{K} \rangle = \frac{1}{2}m \langle c^{2} \rangle$	M1			
			clear algebra leading to $\langle E_K \rangle = \frac{3}{2} kT$	A1	[2]		
	(c)	(i)	sum of potential energy and kinetic energy of <u>molecules/atoms/particles</u> reference to random (distribution)	M1 A1	[2]		
		(ii)	no intermolecular forces so no potential energy (change in) internal energy is (change in) kinetic energy and this	B1			
			proportional to (change in) T	B1	[2]		

	Page 3	3 Mark Scheme: Teachers' version Syllabus	Paper	
		GCE AS/A LEVEL – October/November 2011 9702	42	
3	(a) (i)	amplitude remains constant	B1	[1]
	(ii)	<u>amplitude</u> decreases gradually light damping	M1 A1	[2]
	(iii)	period = 0.80 s frequency = 1.25 Hz (<i>period not 0.8 s, then 0/2</i>)	C1 A1	[2]
	(b) (i)	(induced) e.m.f. is proportional to rate of change/cutting of (magnetic) flux (linkage)	M1 A1	[2]
	(ii)	a current is induced in the coil as magnet moves in coil current in resistor gives rise to a heating effect thermal energy is derived from energy of oscillation of the magnet	M1 A1 M1 A1	[4]
4	(a) (i)	zero field (strength) inside spheres	B1	[1]
	(ii)	either field strength is zero or the fields are in opposite directions at a point between the spheres	M1 A1	[2]
	(b) (i)	field strength is (-) potential gradient (not V/x)	B1	[1]
	(ii)	 field strength has maximum value at x = 11.4 cm 	B1 B1	[2]
		2. field strength is zero either at $x = 7.9$ cm (allow ±0.3 cm)	B1	
		or at 0 to 1.4 cm or 11.4 cm to 12 cm	B1	[2]
5	(a) (i)	$Bqv(sin\theta)$ or $Bqv(cos\theta)$	B1	[1]
	(ii)	qE	B1	[1]
	• • -	must be opposite in direction to <i>F</i> _E magnetic field <u>into</u> plane of paper	B1 B1	[2]

Page 4	Mark Scheme: Teachers' version Syllabus	s Paper		
	GCE AS/A LEVEL – October/November 2011 9702	42		
	riod = 1/50 = 0.03 s	C1 A1	[2]	
(ii) pe	ak voltage = 17.0 V	A1	[1]	
(iii) r.m	n.s. voltage = $17.0/\sqrt{2}$ = 12.0 V	A1	[1]	
(iv) me	an voltage = 0	A1	[1]	
(b) power	$= V^2/R$ = 12 ² /2.4	C1		
	= 60 W	A1	[2]	
	ne represents photon of specific energy emitted as a result of energy change of electron	M1 M1		
specific	energy changes so discrete levels	A1	[3]	
(b) (i) arr	ow from –0.85 eV level to –1.5 eV level	B1	[1]	
(ii) ∆E	$F = hc /\lambda$ = (1.5 - 0.85) × 1.6 × 10 ⁻¹⁹ = 1.04 × 10 ⁻¹⁹ J	C1 C1		
λ		A1	[3]	
(c) spectru two dar	m appears as continuous spectrum crossed by dark lines	B1 B1		
electro	ns in gas absorb photons with energies equal to the excitation energion otons re-emitted in all directions		[4]	
	e for initial number of nuclei/activity reduce to one half of its initial value	M1 A1	[2]	
	= $\ln 2/(24.8 \times 24 \times 3600)$ = $3.23 \times 10^{-7} s^{-1}$	M1 A0	[1]	
(b) (i) <i>A</i> 3.7	= λN '6 × 10 ⁶ = 3.23 × 10 ⁷ × N	C1		
Ν	$= 1.15 \times 10^{13}$	A1	[2]	
	= $N_0 e^{\lambda t}$ = 1.15 × 10 ¹³ × exp(-{ln 2 × 30}/24.8) = 4.97 × 10 ¹²	C1 A1	[2]	
	(4.97 × 10 ¹²)/(1.15 × 10 ¹³ – 4.97 × 10 ¹²) 0.76	C1 A1	[2]	

	Page \$		Mark Scheme: Teachers' version Syllabus	Paper	·
			GCE AS/A LEVEL – October/November 2011 9702	42	
			Section B		
9 ((a)	-	reduced gain increased stability greater bandwidth or less distortion	Do	[0]
		(allo	ow any two sensible suggestions, 1 each, max 2)	B2	[2]
((b)	(i)	V connected to midpoint between resistors V_{OUT} clear and input to V^{+} clear	B1 B1	[2]
		(ii)	gain = $1 + R_F/R$ 15 = $1 + 12000/R$ $R = 860 \Omega$	C1 A1	[2]
((c)	gra	bh: straight line from (0,0) to (0.6,9.0) straight line from (0.6,9.0) to (1.0,9.0)	B1 B1	[2]
((d)	eith or	 relay can be used to switch a large current/voltage output current of op-amp is a few mA/very small relay can be used as a remote switch for inhospitable region/avoids using long heavy cables 	M1 A1 (M1) (A1)	[2]
10 ((a)		large bandwidth/carries more information low attenuation of signal low cost smaller diameter, easier handling, easier storage, less weight high security/no crosstalk low noise/no EM interference ow any four sensible suggestions, 1 each, max 4)	В4	[4]
((b)	(i)	infra-red	B1	[1]
		(ii)	lower attenuation than for visible light	B1	[1]
((c)	(i)	gain/dB = $10 \log(P_2/P_1)$ 26 = $10 \log(P_2/9.3 \times 10^{-6})$ $P_2 = 3.7 \times 10^{-3} W$	C1 A1	[2]
		(ii)	power loss along fibre = $30 \times 0.2 = 6.0 \text{ dB}$ either 6 = $10 \log(P/3.7 \times 10^{-3})$ or 6 dB = $4 \times 3.7 \times 10^{-3}$	C1	L ۲ .
			or $32 = 10 \text{ lg}(P/9.3 \times 10^{-6})$ input power = $1.5 \times 10^{-2} \text{ W}$	A1	[2