UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2010 question paper for the guidance of teachers

9702 PHYSICS

9702/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

B1

B3

[3]

[1]

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2010	9702	42

Section A

(b) graph:	correct curvature from $(R,1.0g_{\rm S})$ & at least one other correct point	M1 A1	[2]

(ratio idea essential)

- (c) (i) fields of Earth and Moon are in opposite directions

 either resultant field found by subtraction of the field strength

 or any other sensible comment

 so there is a point where it is zero

 (allow $F_E = -F_M$ for 2 marks)
 - (ii) $GM_E/x^2 = GM_M/(D-x)^2$ C1 $(6.0 \times 10^{24})/(7.4 \times 10^{22}) = x^2/(60R_E-x)^2$ C1 $x = 54R_E$ A1 [3]
 - (iii) graph: g = 0 at least $\frac{2}{3}$ distance to Moon B1 $g_{\rm E}$ and $g_{\rm M}$ in opposite directions M1
 correct curvature (by eye) and $g_{\rm E} > g_{\rm M}$ at surface A1 [3]
- 2 (a) (i) no forces (of attraction or repulsion) between atoms / molecules / particles B1 [1]
 - (ii) sum of kinetic and potential energy of atoms / molecules M1 due to random motion A1 [2]
 - (iii) (random) kinetic energy increases with temperature no potential energy (so increase in temperature increases internal energy)

 A1 [2]
 - (b) (i) zero A1 [1]
 - (ii) work done = $p\Delta V$ C1 = $4.0 \times 10^5 \times 6 \times 10^4$ = 240 J (*ignore any sign*) A1 [2]

(iii)

1

(a) force per unit mass

change	work done / J	heating / J	increase in internal energy / J
$\begin{array}{c} P \rightarrow Q \\ Q \rightarrow R \\ R \rightarrow P \end{array}$	+240	-600	-360
	0	+720	+720
	-840	+480	-360

(correct signs essential) (each horizontal line correct, 1 mark – max 3)

Page 3					Syllabus	Paper	. [
				GCE AS/A LEVEL – October/November 2010	9702	42	
3	(a)	(i)	resona	ance		B1	[1]
	(ii)	amplitu	A1	[1]		
	(b)	(i)	a = (- a = 47 = 13		C1 C1 A1	[3]	
	(ii)	F = m = 1	oa 50 × 10 ³ × 13.4		C1	
			= 2.			A1	[2]
				b 'below' given line and never zero 1.6 Hz (or slightly less) and flatter		M1 A1	[2]
4	(a) (cha	rge / pc	otential (difference) (ratio must be clear)		B1	[1]
	(b)	(i)	V = Q	$/4\pi\varepsilon_0 r$		B1	[1]
	(1	ii)	C = Q so $C \propto$	$V = 4\pi \varepsilon_0 r$ and $4\pi \varepsilon_0$ is constant		M1 A0	[1]
	(c)	(i)	r = C / r = (6.8 = 6.1 ×	$4\pi\varepsilon_0 r$ 3×10^{-12}) / $(4\pi \times 8.85 \times 10^{-12})$ $\times 10^{-2}$ m		C1 C1 A1	[3]
	(1	ii)	$Q = CV = 6.8 \times 10^{-12} \times 220$ = 1.5 × 10 ⁹ C			A1	[1]
	(d)	(i)	V = Q/ = 83 V	$C = (1.5 \times 10^{-9}) / (18 \times 10^{-12})$		A1	[1]
	(ii)	either	$\Delta E = \frac{1}{2} \times 6.8 \times 10^{-12} \times 220^2 - \frac{1}{2} \times 18 \times 10^{-12} \times 83^2$	2	C1 C1	
			or	= $1.65 \times 10^{-7} - 6.2 \times 10^{-8}$ = 1.03×10^{-7} J energy = $\frac{1}{2}$ QV $\Delta E = \frac{1}{2} \times 1.5 \times 10^{-9} \times 220 - \frac{1}{2} \times 1.5 \times 10^{-9} \times 83$ = 1.03×10^{-7} J		A1 (C1) (C1) (A1)	[3]

	Page 4		4 Mark Scheme: Teachers' version Syllabus GCE AS/A LEVEL – October/November 2010 9702		
5	(a)	field ir	nto (the plane of) the paper	42 B1	[1]
	(b)	force (mv² / I B = =	B1 C1 B1 A0	[3]	
	(c)	(i) <u>se</u>	semicircle with diameter greater than 12.8 cm	B1	[1]
		(ii) ne	new flux density = $\frac{22}{20}$ × 0.454 $B = 0.499 \text{T}$	C1 A1	[2]
6	(a)	(i) e.	e.g. prevent flux losses / improve flux linkage	B1	[1]
		e.	lux in core is changing e.m.f. / current (induced) <u>in core</u> nduced current in core causes heating	B1 B1 B1	[3]
	(b)		hat value of the direct current producing same (mean) power / heating n a resistor	M1 A1	[2]
			power in primary = power in secondary $V_P I_P = V_S I_S$	M1 A1	[2]
7	(a)	(i) e.	e.g. electron / particle diffraction	B1	[1]
		(ii) e.	e.g. photoelectric effect	B1	[1]
	(b)	(i) 6	5	A1	[1]
		λ =	change in energy = 4.57×10^{-19} J a = hc / E = $(6.63 \times 10^{-34} \times 3.0 \times 10^{8}) / (4.57 \times 10^{-19})$ = 4.4×10^{-7} m	C1 A1	[2]
8	(a)	splitting of a heavy nucleus (not atom/nuclide) into two (lighter) nuclei of approximately same mass		M1 A1	[2]
	(b)	-	(allow 4_2lpha)	M2 A1	[3]
	(c)		ed particles have kinetic energy e of particles in the control rods is short / particles stopped in rods /	B1	
		lose k	B1 B1	[3]	

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2010	9702	42

Section B

Pa	ge 6	Ма	ark Scheme: Teachers' version	Syllabus	Paper	•
	(GCE AS	/A LEVEL – October/November 2010	9702	42	
	•	to the m	nicrophone iers scores no mark)		M1 A1	[2]
12 (a)	satellite rece signal amplit at a different different frece e.g. of freque	er wave) transmitted from Earth to satellite ite receives greatly attenuated signal I amplified and transmitted back to Earth lifferent (carrier) frequency ent frequencies prevent swamping of uplink signal of frequencies used (6/4 GHz, 14/11 GHz, 30/20 GHz) B1 marks plus any two other for additional physics)			B1 B1 B2	[4]
(b)	advantage:		much shorter time delay because orbits are much lower whole Earth may be covered in several orbits / with network		M1 A1 (M1) (A1)	
	disadvantag	e: e.g.	either must be trackedor limited use in any one orbitmore satellites required for continuous of	pperation	M1 A1	[4]