

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

PHYSICS

9702/43 May/June 2016

Paper 4 A Level Structured Questions MARK SCHEME Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 \circledast IGCSE is the registered trademark of Cambridge International Examinations.

Page 2		2	Mark Scheme Sy	/llabus	Paper					
			Cambridge International AS/A Level – May/June 2016 9702							
1	(a)	(gr	avitational) potential at infinity defined as/is zero		B1					
		(gr (sc	avitational) force <u>attractive</u> so work got out/done as object moves from in potential is negative)	nfinity	B1	[2]				
	(b)	(i)	$\Delta E = m \Delta \phi$ = 180 × (14 - 10) × 10 ⁸		C1					
			$= 7.2 \times 10^{10} \text{ J}$		A1					
			increase		B1	[3]				
		(ii)	energy required = $180 \times (10 - 4.4) \times 10^8$ or							
			energy per unit mass = $(10 - 4.4) \times 10^8$		C1					
			$\frac{1}{2} \times 180 \times v^2 = 180 \times (10 - 4.4) \times 10^8$							
			or $\frac{1}{2} \times v^2 = (10 - 4.4) \times 10^8$		C1					
			$v = 3.3 \times 10^4 \mathrm{ms^{-1}}$		A1	[3]				
2	(a)	e.g	. time of collisions negligible compared to time between collisions							
			no intermolecular forces (except during collisions)							
			random motion (of molecules)							
			large numbers of molecules							
			(total) volume of molecules negligible compared to volume of containin or	ng vessel						
			average/mean separation large compared with size of molecules							
			any two		B2	[2]				
2	(b)	(i)	mass = 4.0 / (6.02×10^{23}) = 6.6×10^{-24} g							
			or mass = $4.0 \times 1.66 \times 10^{-27} \times 10^3 = 6.6 \times 10^{-24}$ g		B1	[1]				
		(ii)	$\frac{3}{2}kT = \frac{1}{2}m < c^2 >$		C1					
			$\frac{3}{2} \times 1.38 \times 10^{-23} \times 300 = \frac{1}{2} \times 6.6 \times 10^{-27} \times \langle c^2 \rangle$							
			$< c^{2} > = 1.88 \times 10^{6} (m^{2} s^{-2})$		C1					
			r.m.s. speed = $1.4 \times 10^3 \mathrm{ms^{-1}}$		A1	[3]				

Pa	ige 3	}	Mark Scheme Syllabus	Paper	
			Campridge International AS/A Level – May/June 2016 9702	43	
3	(a)	acc	eleration/force proportional to displacement (from fixed point)	M1	
		acc	eleration/force and displacement in opposite directions	A1	[2]
	(b)	ma	ximum displacements/accelerations are different	B1	
		gra	ph is curved/not a straight line	B1	[2]
	(c)	(i)	$\omega = 2\pi / T$ and $T = 0.8 s$	C1	
			$\omega = 7.9 \text{ rad s}^{-1}$	A1	[2]
		(ii)	$a = (-)\omega^2 x$ = 7.85 ² × 1.5 × 10 ⁻²	C1	
			= 0.93 m s^{-2} or 0.94 m s^{-2}	A1	[2]
	(iii)	$\Delta E = \frac{1}{2} m \omega^2 (x_0^2 - x^2)$	C1	
			$= \frac{1}{2} \times 120 \times 10^{-3} \times 7.85^2 \times \{(1.5 \times 10^{-2})^2 - (0.9 \times 10^{-2})^2\}$	C1	
			$= 5.3 \times 10^{-4} \text{ J}$	A1	[3]
4	(a)	(i)	product of speed and density	M1	
			reference to speed in medium (and density of medium)	A1	[2]
		(ii)	α : ratio of reflected intensity and/to incident intensity	B1	
			Z_1 and Z_2 : (specific) acoustic impedances of media (on each side of boundary)	B1	[2]
	(b)	in n	nuscle: $I_{\rm M} = I_0 e^{-\mu x}$ = $I_0 \exp(-23 \times 3.4 \times 10^{-2})$	C1	
		I _M /	$I_0 = 0.457$	C1	
		at b	boundary: $\alpha = (6.3 - 1.7)^2 / (6.3 + 1.7)^2$ = 0.33	C1	
		I_{T}/I	$T_{\rm M} = [(1 - \alpha) =] 0.67$	C1	
		I_{T} /	$I_0 = 0.457 \times 0.67$ = 0.31	A1	[5]

Page		4 Mark Scheme							Syllabus	Paper			
			Cambridge International AS/A Level – May/June 2016								9702	43	
5	(a)	(i)	<u>1</u> 011									A1	[1]
		(ii)	0	0.25	0.50	0.75	1.00	1.25	1.50				
			1011	0110	1000	1110	0101	0011	0001				
			All 6 cc	orrect, 2	marks.	5 corre	ect, 1 m	ark.				A2	[2]
	(b)	ske	tch: 6 ho	orizonta	l steps	of widtł	n 0.25 m	is show	n			M1	
		ste	os at coi	rrect hei	ghts ar	nd all st	eps sho	wn				A1	
		ste	os show	n in cor	rect tim	e interv	als					A1	[3]
	(c)	inci	ease sa	mpling	frequer	ncy/rate						M1	
		so	hat step	width/c	lepth is	reduce	ed					A1	
		incı	ease nu	imber o	f bits (ir	n each i	number)				M1	
		SO 1	hat step	height	is redu	ced						A1	[4]
6	(a)	ske	tch: fror	n <i>x</i> = 0 f	to <i>x</i> = <i>R</i>	?, poten	tial is co	onstant	at V _s			B1	
		sm	ooth cur	ve throu	ıgh (<i>R</i> ,	V _s) and	l (2 <i>R</i> , 0	.5V _s)				B1	
		sm	ooth cur	ve conti	nues to) (3 <i>R</i> , 0	.33V _S)					B1	[3]
	(b)	ske	tch: fror	n <i>x</i> = 0 1	to x = R	?, field s	trength	is zero				B1	
		sm	ooth cur	ve throu	ıgh (<i>R</i> ,	E) and	(2 <i>R</i> , 0.2	25 <i>E</i>)				B1	
		sm	ooth cur	ve conti	nues to	o (3 <i>R</i> , 0	.11 <i>E</i>)					B1	[3]
7	(a)	line	has no	n-zero iı	ntercep	t/line do	oes not	pass th	rough a	rigin		B1	
		cha or	rge is/sl	hould be	e propo	rtional t	o poter	itial (dif	erence)			
		cha (the	rge is/sl erefore t	hould be here is a	e zero v a syster	vhen p. matic ei	d. is zei rror)	ro				B1	[2]

PMT

ige 5	Mark Scheme Syllabu	s Pap	Paper			
	Cambridge International AS/A Level – May/June 2016 9702					
(b)	reasonable attempt at line of best fit	B1				
	use of gradient of line of best fit clear	M1				
	$C = 2800 \ \mu\text{F} \text{ (allow } \pm 200 \ \mu\text{F} \text{)}$	A1	[3]			
(c)	energy = $\frac{1}{2} CV^2$ or energy = $\frac{1}{2} QV$ and $C = Q / V$	C1				
	$\Delta \text{ energy } = \frac{1}{2} \times 2800 \times 10^{-6} \times (9.0^2 - 6.0^2)$	C1				
	= $6.3 \times 10^{-2} \text{ J}$	A1	[3]			
(a)	op-amp has infinite/(very) large gain	B1				
	op-amp saturates if $V^+ \neq V^-$	M1				
	V^* is at earth potential so P (or V^-) must be at earth	A1	[3]			
(b)	input resistance to op-amp is very large					
	current in R_2 = current in R_1	B1				
	$V_{\rm IN}(-0) = IR_2 \text{ and } (0) - V_{\rm OUT} = IR_1$	M1				
	$V_{\rm OUT} / V_{\rm IN} = -R_1 / R_2$	A1	[3]			
(c)	relay coil connected between V_{OUT} and earth	M1				
	correct diode symbol connected between V_{OUT} and coil or between coil and earth	h M1				
	correct polarity for diode ('clockwise')	A1	[3]			
(a)	0.10 mm	B1	[1]			
(b)	$V_{\rm H}~=(0.13 \times 3.8) /(6.0 \times 10^{28} \times 0.10 \times 10^{-3} \times 1.60 \times 10^{-19})$	C1				
	$= 5.1 \times 10^{-7} \text{ V}$	A1	[2]			
(a)	(non-uniform) magnetic flux <u>in core</u> is changing	M1				
	induces (different) e.m.f. in (different parts of) the core	A1				
	(eddy) currents form in the core	M1				
	which give rise to heating	A1	[4]			
	(b) (c) (a) (c) (a) (b) (a)	gg 5 Mark Scheme Syllabu Cambridge International AS/A Level – May/June 2016 9702 (b) reasonable attempt at line of best fit use of gradient of line of best fit clear $C = 2800 \ \mu$ F (allow $\pm 200 \ \mu$ F) (c) (c) energy = ½ CV^2 or energy = ½ QV and $C = Q / V$ Δ energy = ½ $\times 2800 \times 10^{-6} \times (9.0^2 - 6.0^2)$ $= 6.3 \times 10^{-2} $ J (a) op-amp has infinite/(very) large gain op-amp saturates if $V^* \neq V^-$ V^* is at earth potential so P (or V') must be at earth (b) input resistance to op-amp is very large or current in R_2 = current in R_1 $V_{OUT} / V_{IN} = -R_1 / R_2$ (c) relay coil connected between V_{OUT} and earth correct diode symbol connected between V_{OUT} and coil or between coil and eartic correct polarity for diode ('clockwise') (a) 0.10 mm (b) $V_H = (0.13 \times 3.8) / (6.0 \times 10^{28} \times 0.10 \times 10^{-3} \times 1.60 \times 10^{-19})$ $= 5.1 \times 10^{-7}$ V (c) (a) (b) $V_H = (0.13 \times 3.8) / (6.0 \times 10^{28} \times 0.10 \times 10^{-3} \times 1.60 \times 10^{-19})$ $= 5.1 \times 10^{-7}$ V (a) (non-uniform) magnetic flux in core is changing induces (different) e.m.f. in (different parts of) the core (eddy) currents form in the core which give rise to heating	ge 5Mark SchemeSyllabusPapCambridge International ASIA Level – May/June 2016970243(b) reasonable attempt at line of best fit use of gradient of line of best fit clearM1 $C = 2800 \ \mu$ F (allow $\pm 200 \ \mu$ F)A1(c) energy = ½ CV^2 or energy = ½ QV and $C = Q / V$ C1 Δ energy = ½ $2V^2$ or energy = ½ QV and $C = Q / V$ C1 Δ energy = ½ $2800 \times 10^{-6} \times (9.0^2 - 6.0^2)$ C1 $= 6.3 \times 10^{-2}$ JA1(a) op-amp has infinite/(very) large gain op-amp saturates if $V^* \neq V^-$ M1 V^* is at earth potential so P (or V [*]) must be at earthA1(b) input resistance to op-amp is very large or current in R_2 = current in R_1 B1 $V_{N}(-0) = IR_2$ and (0) $-V_{OUT} = IR_1$ $V_{OUT} / V_N = -R_1 / R_2$ A1(c) relay coil connected between V_{OUT} and earth correct polarity for diode ('clockwise')A1(a) 0.10 mmB1B1(b) $V_{H} = (0.13 \times 3.8) / (6.0 \times 10^{28} \times 0.10 \times 10^{-3} \times 1.60 \times 10^{-19})$ $= 5.1 \times 10^{-7}$ VC1(a) (non-uniform) magnetic flux In core induces (different) e.m.f. in (different parts of) the coreA1(eddy) currents form in the core which give rise to heatingA1			

Ρά	age 6	Mark Scheme	Syllabus	Paper	
		Cambridge International AS/A Level – May/June 2016	9702	43	
	(b)	as magnet falls, tube cuts magnetic flux		M1	
		e.m.f./(eddy) currents induced in metal/aluminium (tube)		A1	
		(eddy) current heating of tube		M1	
		with energy taken from falling magnet		A1	
		or			
		(eddy) currents produce magnetic field		(M1)	
		that opposes motion of magnet		(A1)	
		so magnet B has acceleration < g			
		magnet B has smaller acceleration/reaches terminal speed		A1	[5]
11	(a)	period = 15 ms		C1	
	()	frequency $(= 1 / T) = 67$ Hz		A1	[2]
	(b)	zero		A1	[1]
	(c)	$I = I / \sqrt{2}$		C1	
	(0)	$r_{r.m.s.} = 107 VZ$		U1	
		= 0.53 A		A1	[2]
	(d)	energy = $I_{r.m.s.}^2 \times R \times t$ or $\frac{1}{2} I_0^2 \times R \times t$			
		or power = $I_{r.m.s.}^2 \times R$ and energy = power $\times t$		C1	
		energy = $0.53^2 \times 450 \times 30 \times 10^{-3}$			
		= 3.8 J		A1	[2]
12	(a)	(in a solid electrons in) neighbouring atoms are close together (and influence/interact with each other)		M1	
		this changes their electron energy levels		M1	
		(many atoms in lattice) cause a spread of energy levels into a band		A1	[3]

Page 7	Mark Scheme	Syllabus	Pap	er
	Cambridge International AS/A Level – May/June 2016	9702	43	
(b)	photons of light give energy to electrons in valence band		B1	
	electrons move into the conduction band		M1	
	leaving holes in the valence band		A1	
	these electrons and holes are charge carriers		B1	
	increased number/increased current, hence reduced resistance		B1	[5]
13 (a)	e.g. background count (rate)/radiation			
	multiple possible counts from each decay			
	radiation emitted in all directions			
	dead-time of counter			
	(daughter) product unstable/also emits radiation			
	self-absorption of radiation in sample or absorption in air/detector w	indow		
	three sensible suggestions, 1 each		B3	[3]
(b)	$A = A_0 \exp(-\ln 2 \times t / T_{\frac{1}{2}})$			
	$1.21 \times 10^2 = 3.62 \times 10^4 \exp(-\ln 2 \times 42.0 / T_{\frac{1}{2}})$			
	$1.21 \times 10^2 = 3.62 \times 10^4 \exp(-\lambda \times 42.0)$		C1	
	$T_{\gamma_2} = 5.1 \text{ minutes } (306 \text{ s})$		A1	[2]
(c)	discrete energy levels (in nuclei)		B1	[1]