CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2014 series

9702 PHYSICS

9702/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9702	41

Section A

1	(a)	work done bringing unit mass from infinity (to the point)				[2]
	(b)	E _P =	= -m <i>φ</i>		B1	[1]
	(c)	$\phi \propto$	1/ <i>x</i>		C1	
		eith	and	$6R$ from centre, potential is $(6.3 \times 10^7)/6$ (= 1.05×10^7 J kg ⁻¹) Let $5R$ from centre, potential is $(6.3 \times 10^7)/5$ (= 1.26×10^7 J kg ⁻¹) unge in energy = $(1.26 - 1.05) \times 10^7 \times 1.3$ = 2.7×10^6 J	C1 C1 A1	
		or		inge in potential = $(1/5 - 1/6) \times (6.3 \times 10^7)$ inge in energy = $(1/5 - 1/6) \times (6.3 \times 10^7) \times 1.3$ = 2.7×10^6 J	(C1) (C1) (A1)	[4]
2	(a)			r of atoms carbon-12	M1 A1	[2]
	(b)	(i)	amour	nt = 3.2/40 = 0.080 mol	A1	[1]
		(ii)	p = 9.	0RT $0 \times 10^{-6} = 0.080 \times 8.31 \times 310$ 8×10^{5} Pa To not credit if T in °C not K)	C1 A1	[2]
		(iii)	either	$pV = 1/3 \times Nm < c^2 >$ $N = 0.080 \times 6.02 \times 10^{23} (= 4.82 \times 10^{22})$ $\frac{\text{and } m}{m} = 40 \times 1.66 \times 10^{-27} (= 6.64 \times 10^{-26})$ $9.8 \times 10^5 \times 210 \times 10^{-6} = 1/3 \times 4.82 \times 10^{22} \times 6.64 \times 10^{-26} \times < c^2 >$ $< c^2 > = 1.93 \times 10^5$ $c_{\text{RMS}} = 440 \text{ m s}^{-1}$	C1 C1	[3]
			or	$Nm = 3.2 \times 10^{-3}$ $9.8 \times 10^{5} \times 210 \times 10^{-6} = 1/3 \times 3.2 \times 10^{-3} \times < c^{2} >$ $< c^{2} > = 1.93 \times 10^{5}$ $c_{\text{RMS}} = 440 \text{ m s}^{-1}$	(C1) (C1)	
			or	$C_{RMS} = 440 \text{ m/s}$ $1/2 \text{ m} < c^2 > = 3/2 \text{ kT}$ $1/2 \times 40 \times 1.66 \times 10^{-27} < c^2 > = 3/2 \times 1.38 \times 10^{-23} \times 310$ $< c^2 > = 1.93 \times 10^5$ $C_{RMS} = 440 \text{ m/s}^{-1}$	(A1) (C1) (C1) (A1)	
				(if T in °C not K award max 1/3, unless already penalised in (b)(ii))		

	Pa	ge 3		0.	OF A	Mark Scheme	Syllabus	Paper	,
				G	CE A	S/A LEVEL – May/June 2014	9702	41	
3	(a)	or	lic	quid volum	e <<	$e = (1.69 - 1.00 \times 10^{-3})$ volume of vapour $\times 1.69 = 1.71 \times 10^{5} (J)$		M1 A1	[2]
	(b)	(i)	1. he	eating of sy	ystem	/thermal energy supplied to the system	ı	B1	[1]
			2. wo	ork done o	n the	system		B1	[1]
		(ii)				(1.71×10^5) (3 s.f. needed)		C1 A1	[2]
4	(a)	kine	tic (e	nergy)/KE	/ E ĸ			В1	[1]
	(b)	<i>or</i> new	<u>m</u> amp		ortion .3 cm		working	B1 B1 B1	[3]
5	(a)	grap	CL	urve with d	lecrea	nstant potential = V_0 from $x = 0$ to $x = r$ asing gradient (2 r , 0.50 V_0) and (4 r , 0.25 V_0)		B1 M1 A1	[3]
	(b)	grap	cı pa	urve with dassing thro	lecrea ough (= 0 from $x = 0$ to $x = r$ asing gradient from (r, E_0) $(2r, \frac{1}{4}E_0)$ must be drawn to $x = 4r$ and must not	touch x-axis)	B1 M1 A1	[3]
6	(a)	(i)	ener	gy = EQ = 9.0 : = 0.20		× 10 ^{−3}		C1 A1	[2]
		(ii)		= Q/V = (22 × 1 = 4.7 V	0 ⁻³)/(4	4700×10^{-6})		C1 A1	[2]
			2.	either		± ½CV ² ± ½ × 4700 × 10 ⁻⁶ × 4.7 ²		C1	
						$5.1 \times 10^{-2} \text{ J}$		A1	[2]
				or		1/2QV 1/2 × 22 × 10 ⁻³ × 4.7		(C1)	
						$5.1 \times 10^{-2} \text{ J}$		(A1)	
				or	_	$1/2Q^2/C$: $1/2 \times (22 \times 10^{-3})^2/4700 \times 10^{-6}$		(C1)	
						$5.1 \times 10^{-2} \text{ J}$		(A1)	

	Page 4		Mark Scheme	Syllabus	Paper	•
			GCE AS/A LEVEL – May/June 2014	9702	41	
	(b)		ost (as thermal energy) in resistance/wires/battery/res/battery/res/battery/res/battery/res/battery/res/battery/res/battery/res/battery/res/batter	stor	B1	[1]
7	(a)	V	$t_{\rm H}$ increases from zero when current switched on $t_{\rm H}$ then non-zero constant $t_{\rm H}$ returns to zero when current switched off		B1 B1 B1	[3]
	(b)		uced) e.m.f. proportional to rate nange of (magnetic) flux (linkage)		M1 A1	[2]
		zero	e as current is being switched on e.m.f. when current in coil e in opposite direction when switching off		B1 B1 B1	[3]
8	(a)	allow: dis	and equal amounts (of charge) screte amounts of 1.6×10^{-19} C/elementary charge/e tegral multiples of 1.6×10^{-19} C/elementary charge/e		B1	[1]
	(b)	weight = 4.8×10^{-1} $q = 4.9 \times 10^{-1}$	$e^{-14} = (q \times 680)/(7.0 \times 10^{-3})$		C1 A1	[2]
	(c)	either th	ary charge = 1.6×10^{-19} C (allow 1.6×10^{-19} C to 1.7×10^{-19} C to 1.7	10 ⁻¹⁹ C)	M0 C1 A1	[2]
9	(a)	max max rate	me delay between illumination and emission (kinetic) energy of electron dependent on frequency (kinetic) energy of electron independent of intensity of emission of electrons dependent on/proportional to be separate statements, one mark each, maximum 3)	intensity	В3	[3]
	(b)		oton) interaction with electron may be below surface rgy required to bring electron to surface		B1 B1	[2]

(ii) 1. threshold frequency = 5.8×10^{14} Hz 2. $\Phi = hf_0$ C1 $= 6.63 \times 10^{-34} \times 5.8 \times 10^{14}$ $= 3.84 \times 10^{-19} \text{ (J)}$ $= (3.84 \times 10^{-19})/(1.6 \times 10^{-19})$ $= 2.4 \text{ eV}$ A1 Or $hf = \Phi + E_{\text{MAX}}$ chooses point on line and substitutes values E_{MAX} , f and h into equation with the units of the hf term converted from J to eV $\Phi = 2.4 \text{ eV}$ (C) 41 (D) (C) (C) (C) (C) (C) (C) (C)	[3] 1) 1)
2. $\Phi = hf_0$ C1 $= 6.63 \times 10^{-34} \times 5.8 \times 10^{14}$ $= 3.84 \times 10^{-19} \text{ (J)}$ C1 $= (3.84 \times 10^{-19})/(1.6 \times 10^{-19})$ $= 2.4 \text{ eV}$ A1 or $hf = \Phi + E_{\text{MAX}}$ chooses point on line and substitutes values E_{MAX} , f and h into equation with the units of the hf term converted from J to eV $\Phi = 2.4 \text{ eV}$ (A	[3] 1) 1)
= $6.63 \times 10^{-34} \times 5.8 \times 10^{14}$ = 3.84×10^{-19} (J) C1 = $(3.84 \times 10^{-19})/(1.6 \times 10^{-19})$ = 2.4 eV A1 or $hf = \Phi + E_{\text{MAX}}$ (Concess point on line and substitutes values E_{MAX} , f and h into equation with the units of the hf term converted from J to eV (A2)	[3] 1) 1) 1)
= 3.84×10^{-19} (J) C1 = $(3.84 \times 10^{-19})/(1.6 \times 10^{-19})$ = 2.4 eV A1 or $hf = \Phi + E_{\text{MAX}}$ (Concerning the substitutes values E_{MAX} , f and h into equation with the units of the hf term converted from J to eV (C) $\Phi = 2.4$ eV (A2)	[3] 1) 1) 1)
equation with the units of the hf term converted from J to eV (A)	1)
or $hf = \Phi + E_{\text{MAX}}$ (Continuous point on line and substitutes values E_{MAX} , f and h into equation with the units of the hf term converted from J to eV (A) $\Phi = 2.4 \text{ eV}$	1)
$hf = \Phi + E_{\text{MAX}}$ (Continuous point on line and substitutes values E_{MAX} , f and h into equation with the units of the hf term converted from J to eV (A) $\Phi = 2.4 \text{ eV}$	1) 1)
chooses point on line and substitutes values E_{MAX} , f and h into equation with the units of the hf term converted from J to eV (A Φ = 2.4 eV (A	1) 1)
equation with the units of the hf term converted from J to eV (C Φ = 2.4 eV (A	1)
10 (a) energy required to separate the nucleons (in a nucleus)	
	[2]
to infinity (allow reverse statement)	
(b) (i) $\Delta m = (2 \times 1.00867) + 1.00728 - 3.01551$	
$= 9.11 \times 10^{-3} \text{ u}$ C1	
binding energy = $9.11 \times 10^{-3} \times 930$ = 8.47 MeV	[3]
(allow 930 to 934 MeV so answer could be in range 8.47 to 8.51 MeV) (allow 2 s.f.)	
(ii) $\Delta m = 211.70394 - 209.93722$ = 1.76672 u C1	
binding energy per nucleon = $(1.76672 \times 930)/210$	
= 7.82 MeV A1 (allow 930 to 934 MeV so answer could be in range 7.82 to 7.86 MeV)	[3]
(allow 2 s.f.)	
(c) total binding energy of barium and krypton is greater than binding energy of uranium A1	
is greater than binding energy of dramidin	[2]
Section B	
11 (a) (i) inverting amplifier B1	[1]
(ii) gain is <u>very</u> large/infinite	
V^{\dagger} is earthed/zero B1 for amplifier not to saturate, P must be (almost) earth/zero B1	
	[-]
(b) (i) $R_A = 100 \text{ k}\Omega$	
$R_{\rm B}$ = 10 k Ω A1 $V_{\rm IN}$ = 1000 mV	
(ii) variable range meter B1	[1]

Page 6	Mark Scheme	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2014	9702	41

12	(a)	series of X-ray images (for one section/slice) taken from different angles to give image of the section/slice repeated for many slices to build up three-dimensional image (of whole object)	M1 M1 A1 M1 A1	[5]
	(b)	deduction of background from readings division by three	C1 C1	
		P=5 Q=9 R=7 S=13		
		(four correct 2/2, three correct 1/2)	A2	[4]
13	(a)	e.g. noise can be eliminated/waveform can be regenerated extra bits of data can be added to check for errors cheaper/more reliable		
		greater <u>rate</u> of transfer of data (1 each, max 2)	B2	[2]
	(b)	receives bits all at one time transmits the bits one after another	B1 B1	[2]
	(c)	sampling frequency must be higher than/(at least) twice frequency to be sampled either higher (range of) frequencies reproduced on the disc	M1	
		or lower (range of) frequencies on phone either higher quality (of sound) on disc	A1	
		or high quality (of sound) not required for phone	B1	[3]
14	(a)	reduction in power (allow intensity/amplitude)	B1	[1]
	(b)			
		= 72 dB	A1	[1]
		(ii) gain/attenuation/dB = 10 $\lg(P_2/P_1)$ 72 = 10 $\lg(P_{IN}/P_{OUT})$ or -72 = 10 $\lg(P_{OUT}/P_{IN})$ ratio = 1.6 × 10 ⁷	C1 C1 A1	[3]
	(c)	e.g. enables smaller/more manageable numbers to be used		
	(-)	e.g. gains in dB for series amplifiers are added, not multiplied	B1	[1]