MARK SCHEME for the May/June 2013 series

9702 PHYSICS

9702/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Pa	ge 2	1	Mark Scheme	Syllabus	Paper	
		<u> </u>		GCE AS/A LEVEL – May/June 2013	9702	42	
				Section A			
1	(a)	sate peri	ellite i iod is	al orbit / above equator moves from west to east / same direction as Earth spins 24 hours / same period as spinning of Earth mark for 'appears to be stationary/overhead' if none of a	bove marks scored	B1 B1 B1 り	[3]
	(b)	GM ω =	lm/R ² 2π / 1	anal force provides/is the centripetal force = $mR\omega^2$ or $GMm/R^2 = mv^2/R$ T or $v = 2\pi R / T$ or clear substitution rking to give $R^3 = (GMT^2 / 4\pi^2)$		B1 M1 M1 A1	[4]
	(c)	= R =	= 7.57 4.2 >	$7 \times 10^{-11} \times 6.0 \times 10^{24} \times (24 \times 3600)^2 / 4\pi^2$ 7 × 10 ²² × 10 ⁷ m out 3600 gives 1.8 × 10 ⁵ m and scores 2/3 marks)		C1 C1 A1	[3]
2	(a)	(i)		pV = nRT 1.80 × 10 ⁻³ × 2.60 × 105 = $n × 8.31 × 297$ n = 0.19 mol		C1 A1	[2]
				$\Delta q = mc\Delta T$ 95.0 = 0.190 × 12.5 × ΔT ΔT = 40 K (allow 2 marks for correct answer with clear logic shown))	B1 A1	[2]
		(ii)	(2.6	= constant × 10 ⁵) / 297 = <i>p</i> / (297 + 40) 2.95 × 10 ⁵ Pa		M1 A0	[1]
	(b)	inte	rnal e	n internal energy is 120 J / 25 J energy decreases / $\underline{\Delta}U$ is negative / kinetic energy of molerature lower	ecules decreases	B1 M1 A1	[3]

	Page 3	Mark Scheme Sylla	abus Pap	er
	I age U		02 42	
3		$w = 2\pi / T$ = 2 $\pi / 0.69$ = 9.1 rad s ⁻¹ allow use of f = 1.5 Hz to give ω = 9.4 rad s ⁻¹)	C1 A1	
	(ii) 1	1. $x = 2.1 \cos 9.1t$ 2.1 and 9.1 numerical values use of cos	B1 B1	
	2	2. $v_0 = 2.1 \times 10^{-2} \times 9.1$ (allow ecf of value of x_0 from (ii)1.) = 0.19 m s ⁻¹ $v = v_0 \sin 9.1t$ (allow $\cos 9.1t$ if $\sin used in (ii)1.$)	B1 B1	
	(b) enerç	gy = either $\frac{1}{2} m v_0^2$ or $\frac{1}{2} m \omega^2 x_0^2$ = either $\frac{1}{2} \times 0.078 \times 0.19^2$ or $\frac{1}{2} \times 0.078 \times 9.1^2 \times (2.1 \times 10^{-2})^2$ = 1.4×10^{-3} J	C1 A1	
4	(a) (i) \	$I = q / 4\pi \varepsilon_0 R$	B1	[1]
		capacitance is) ratio of charge and potential or q/V C = $q/V = 4\pi\epsilon_0 R$	M1 A0	
	(b) (i) ($C = 4\pi \times 8.85 \times 10^{-12} \times 0.45$ = 50 pF	C1 A1	
		wither energy = $\frac{1}{2} CV^2$ or energy = $\frac{1}{2} QV$ and $Q = CV$ energy of spark = $\frac{1}{2} \times 50 \times 10^{-12} \{(9.0 \times 10^5)^2 - (3.6 \times 10^5)^2\}$ = 17 J	C1 C1 A1	
5		orm magnetic) flux normal to long (straight) wire carrying a current tes) force per unit length of 1 N m ⁻¹	of 1 A M1 A1	
	(b) (i) s	sketch: concentric circles increasing separation <i>(must show more than 3 circles)</i> correct direction (anticlockwise, looking down)	M1 A1 B1	
	(ii) E		C1 A1	
		$F = BIL (\sin \theta)$ = 2.8 × 10 ⁻⁵ × 9.3 × 1 F/L = 2.6 × 10 ⁻⁴ N m ⁻¹	C1 A1	[2]
	react	per unit length depends on product $I_{\rm X}I_{\rm Y}$ / by Newton's third law / a ion are equal and opposite ime for both	ction and M1 A1	[2]

	Pa	ge 4	Ļ	Mark Scheme	Syllabus	Paper	I
		3-	_	GCE AS/A LEVEL – May/June 2013	9702	42	
6	(a)) e.m.f. <u>proportional to rate</u> e of (magnetic) flux (linkage)		M1 A1	[2]
	(b)	(i)	posit	tive terminal identified (upper connection to load)		B1	[1]
		(ii)	ratio (V _P = (<i>ratio</i>	$\sqrt{2} \times V_{\text{RMS}}$ = 240 $\sqrt{2}$ / 9 = 38 = V_{RMS} / $\sqrt{2}$ gives ratio = 18.9 and scores 1/3) p = 240 / 9 = 26.7 scores 1/3) $p = 9$ / (240 / $\sqrt{2}$) = 0.0265 is inverted ratio and scores 1/4	3)	C1 C1 A1	[3]
	(c)	(i)	-	(output) p.d. / voltage / current does not fall to zero range of (output) p.d. / voltage / current is reduced <i>(any</i>	sensible answer)	B1	[1]
		(ii)	sket	ch: same peak value at start of discharge correct shape between one peak and the next		M1 A1	[2]
7	(a)			velength is associated with a discrete <u>change</u> in energy energy <u>change</u> / difference implies discrete levels		M1 A1	[2]
	(b)	(i)	1.	arrow from –0.54 eV to –0.85 eV, labelled L		B1	[1]
				arrow from –0.54 eV to –3.4 eV , labelled S (two correct arrows, but only one label – allow 2 marks) (two correct arrows, but no labels – allow 1 mark)		B1	[1]
		(ii)		hc / λ - 0.54) × 1.6 × 10 ⁻¹⁹ = (6.63 × 10 ⁻³⁴ × 3.0 × 10 ⁸) / λ 4.35 × 10 ⁻⁷ m		C1 C1 A1	[3]
	(c)	-0. -0. 3 c	$85 \rightarrow 54 \rightarrow orrect$	 -3.4 = 1.9 eV -3.4 = 2.55 eV (allow 2.6 eV) -3.4 = 2.86 eV (allow 2.9 eV) 2 marks with -1 mark for each additional energy 1 mark but no marks if any additional energy difference 	98	B2	[2]

Page 5		Mark Scheme Syllabus	Paper	
		GCE AS/A LEVEL – May/June 2013 9702	42	
		s given out / released on formation of the α -particle (or reverse argument = mc^2 so mass is less	t) M1	
0	or refe	rence to mass-energy equivalence	A1	[2
(b) (i) mas	ss change = 18.00567 u – 18.00641 u	C1	
(8) (ij mac	= 7.4×10^{-4} u (sign not required)	A1	[2
(i	i) ene	$rgy = c^2 \Delta m$		
	•	$= (3.0 \times 10^8)^2 \times 7.4 \times 10^{-4} \times 1.66 \times 10^{-27}$	C1	
		$= 1.1 \times 10^{-13} \text{ J}$	A1	[2
	(allo	pw use of u = 1.67×10^{-27} kg)		-
	(allo	w method based on 1u equivalent to 930 MeV to 933 MeV)		
(ii	i) eith	er mass of products greater than mass of reactants	M1	
		this mass/energy provided as kinetic energy of the helium-4 nucleus	A1	
	or	both nuclei positively charged	(M1)	_
		energy required to overcome electrostatic repulsion	(A1)	[2

Page 6		6	Mark Scheme	Syllabus	Paper	•
			GCE AS/A LEVEL – May/June 2013	9702	42	
			Section B			
(a)	30	litres	\rightarrow 54 litres (allow ± 4 litres on both limits)		A1	[
(b)	(i)		0.1 V change in reading for 10 litre consumption (or sinverse of the standard structure) of the standard structure of the		B1 0 litres B1	[
	(ii)	volt	meter reading (nearly) zero when fuel is left meter reads only about 0.1 V when 10 litres of fuel left ir Itmeter reads zero when about 4 litres of fuel left in tank		C1 A1 (s)	[
(a)			of density and speed of sound / wave of medium and) speed of sound / wave in medium		M1 A1	I
(b)	if (2 eith	Z ₁ – Z	Z_2) is small, mostly transmission Z_2) is large, mostly reflection <i>(if 'mostly' not stated allow 1/2 marks for these first t</i> reflection / transmission also depends on $(Z_1 + Z_2)$	wo marks)	M1 M1	
(c)	-		intensity reflection coefficient = $(Z_1 - Z_2)^2 / (Z_1 + Z_2)^2$ aller structures can be distinguished better resolution at shorter wavelength / higher frequer	псу	A1 B1 B1	[
(a)		•	g voltage changes energy / speed of <u>electrons</u> g electron energy changes maximum X-ray photon ener	.дХ	M1 A1	
(b)	(i)	1.	loss of power / energy / intensity		B1	I
		2.	intensity changes when beam not parallel decreases when beam is divergent		C1 A1	[
	(ii)		$p = (exp \{-2.9 \times 2.5\}) / (exp \{-0.95 \times 6.0\})$ = 0.21 (min. 2 sig. fig.) ues of both lengths incorrect by factor of 10 ⁻² to give rat	io of 0.985 scor	C1 A1 es 1 mark	- -)

	Page 7	Mark Scheme	Syllabus	Paper	•
		GCE AS/A LEVEL – May/June 2013	9702	42	
12	(a) take	s all the simultaneous digits for one number		B1	
		'sends' them one after another (along the transmission line)		B1	[2]
	(h) (i)	0444		۸ 1	[4]
	(b) (i)	0111		A1	[1]
	(ii)	0110		A1	[1]

(c) levels shown

t	0	0.2	0.4	0.6	0.8	1.0	1.2
	0	8	7	15	6	5	8

(–1 for each error or omission)	A2	
correct basic shape of graph i.e. series of steps	M1	
with levels staying constant during correct time intervals (vertical lines in steps do not need to be shown)	A1	[4]

(d)	increasing number of bits reduces step height	M1	
	increasing sampling frequency reduces step depth / width	M1	
	reproduction of signal is more exact	A1	[3]