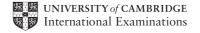
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

9702 PHYSICS

9702/41


Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9702	41

Section A

1	(a)	work done	e in bringing unit mass from infinity (to the point)	B1	[1]
	(b)	either a	nal <u>force</u> is (always) attractive is <i>r</i> decreases, object/mass/body does work york is done by masses as they come together	B1 B1	[2]
	(c)	g if Δ = or Δ if	price on mass = mg (where g is the acceleration of free fall /gravitational field strength) $f = GM/r^2$	B1 B1 B1 M1 A0 (C1) (B1) (B1) (B1) (A0)	[4]
	(d)			C1 C1 A1	[3]
2	(a)	or (ii) (total) comp or radius	random motion constant velocity until hits wall/other molecule volume of molecules is negligible ared to volume of containing vessel s/diameter of a molecule is negligible ared to the average intermolecular distance	B1 M1 A1 (M1) (A1)	[1]
	(b)	or c random m $\langle c^2 \rangle = 3$	nolecule has component of velocity in three directions $c^2 = c_X^2 + c_Y^2 + c_Z^2$ notion and averaging, so $c_X^2 > c_X^2 $	M1 M1 A1 A0	[3]
	(c)	temperatu $c_{rms} = 58$	or $c_{\rm rms} \propto \sqrt{T}$ are $300\rm K$ and $373\rm K$ $0\rm ms^{-1}$ flow any marks for use of temperature in units of °C instead of K)	C1 C1 A1	[3]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9702	41

3	(a)	(numerically equal to) quantity of (thermal) energy required to change		
	. ,	the state of unit mass of a substance	M1	
		without any change of temperature	A1	[2]
		(Allow 1 mark for definition of specific latent heat of fusion/vaporisation)		

4 (a)
$$a = (-)\omega^2 x$$
 and $\omega = 2\pi/T$ C1
 $T = 0.60 \text{ s}$ C1
 $a = (4\pi^2 \times 2.0 \times 10^{-2}) / (0.6)^2$ A1 [3]

(b) sinusoidal wave with all values positive all values positive, all peaks at
$$E_{\rm K}$$
 and energy = 0 at t = 0 B1 period = 0.30 s B1 [3]

5 (a) force per unit positive charge acting on a stationary charge B1 [1]

(b) (i)
$$E = Q / 4\pi\epsilon_0 r^2$$
 C1
 $Q = 1.8 \times 10^4 \times 10^2 \times 4\pi \times 8.85 \times 10^{-12} \times (25 \times 10^{-2})^2$ M1
 $Q = 1.25 \times 10^{-5} \text{ C} = 12.5 \,\mu\text{C}$ A0 [2]

(ii)
$$V = Q / 4\pi\epsilon_0 r$$

= $(1.25 \times 10^{-5}) / (4\pi \times 8.85 \times 10^{-12} \times 25 \times 10^{-2})$ C1
= $4.5 \times 10^5 V$ A1 [2]
(Do not allow use of $V = Er$ unless explained)

	Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE AS/A LEVEL – May/June 2012	9702	41
6	(a) (i) pe	eak voltage = 4.0 V	А	1 [1]
	(ii) r.n	n.s. voltage (= $4.0/\sqrt{2}$) = 2.8 V	А	1 [1]
	fre	priod $T = 20 \text{ms}$ equency = 1 / (20 × 10 ⁻³) equency = 50 Hz	M M A	11
	(b) (i) ch	ange = 4.0 - 2.4 = 1.6 V	А	1 [1]
	(ii) ∆C	$Q = C\Delta V \text{ or } Q = CV$ = 5.0 × 10 ⁻⁶ × 1.6 = 8.0 × 10 ⁻⁶ C	C A	
		scharge time = 7 ms rrent = $(8.0 \times 10^{-6}) / (7.0 \times 10^{-3})$ = $1.1(4) \times 10^{-3}$ A	C M A	11
		pe p.d. = 3.2 V	С	1
	resista	nce = $3.2 / (1.1 \times 10^{-3})$ = 2900Ω (allow 2800Ω)	А	1 [2]
7	(a) sketch	concentric circles (minimum of 3 circles) separation increasing with distance from wire correct direction	M A B	1
	(b) (i) ar	row direction from wire B towards wire A	В	1 [1]
	(ii) eit or so		currents M A	
	varies variatio	llways towards wire A/always in same direction from zero (to a maximum value) (1) on is sinusoidal / sin² (1)	В	1
		ce frequency of current (1) vo, one each)	В	2 [3]
8	of elec	/quantum/discrete amount of energy tromagnetic radiation 1 mark for 'packet of electromagnetic radiation')	M A	
		= Planck constant × frequency (seen here or in b)	В	1 [3]
		coloured) line corresponds to one wavelength/frequency = Planck constant × frequency	В	1
	implies	s specific energy change between energy levels crete levels	B A	

	Page	e 5	Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2012	9702	41	
9	(a) (i	i) eith or	probability of decay (of a nucleus) per unit time $\lambda = (-)(dN/dt) / N$ $(-)dN/dt \text{ and } N \text{ explained}$		M1 A1 (M1) (A1)	[2]
	(ii	½ = In (1	me $t_{1/2}$, number of nuclei changes from N_0 to $1/2N_0$ exp $(-\lambda t_{1/2})$ or $2 = \exp(\lambda t_{1/2})$ or $2 = \exp(\lambda t_{1/2})$ or $2 = \lambda t_{1/2}$ and $2 = \lambda t_{1/2}$ and $2 = \lambda t_{1/2}$ and $2 = \lambda t_{1/2}$	In 2 = 0.693	B1 B1 B1 A0	[3]
	λ	t = 0.10	$38 \exp(-8\lambda)$ 7 (hours ⁻¹) hours <i>(do not allow 3 or more SF)</i>		C1 C1 A1	[3]
	b d	ackgro laughte	dom nature of decay und radiation r product is radioactive o sensible suggestions, 1 each)		B2	[2]

F	Page	6		Syllabus	Paper
			GCE AS/A LEVEL – May/June 2012	9702	41
ectio	on B				
0 (a	a) lig	ght-dep	endent resistor (allow LDR)	В	1 [1
(b	b) (i	-	resistors in series between +5 V line and earth point connected to inverting input of op-amp	M A	
	(ii		y coil between diode and earth ch between lamp and earth	M A	
(c	c) (i		ch on/off mains supply using a low voltage/current output w 'isolates circuit from mains supply')	В	1 [1
	(ii	,	y will switch on for one polarity of output (voltage) ches on when output (voltage) is negative	C A	
1 (a	a) (i	•	radiation produced whenever charged particle is accelera trons hitting target have distribution of accelerations	ted M A	
	(ii	or or	wavelength shorter/shortest for greater/greatest acceles $\lambda_{\min} = hc/E_{\max}$ minimum wavelength for maximum energy lectron energy given up in one collision/converted to single	В	
(b	b) (i		lness measures the penetration of the beam ter hardness, greater penetration	C A	
	(ii		rolled by changing the anode voltage er anode voltage, greater penetration/hardness	C A	
(c	c) (i		-wavelength radiation more likely to be absorbed in the book to penetrate through body	dy/less B	1 [1
	(ii) (alu	minium) filter/metal foil placed in the X-ray beam	В	1 [1

	(c)	(i)	switch on/off mains supply using a low voltage/current output (allow 'isolates circuit from mains supply')	B1	[1]
		(ii)	relay will switch on for one polarity of output (voltage) switches on when output (voltage) is negative	C1 A1	[2]
11	(a)	(i)	e.m. radiation produced whenever charged particle is accelerated electrons hitting target have distribution of accelerations	M1 A1	[2]
		(ii)	either wavelength shorter/shortest for greater/greatest acceleration		
			or $\lambda_{\min} = hc/E_{\max}$ or minimum wavelength for maximum energy all electron energy given up in one collision/converted to single photon	B1 B1	[2]
	(b)	(i)	hardness measures the penetration of the beam	C1	
			greater hardness, greater penetration	A1	[2]
		(ii)	controlled by changing the anode voltage higher anode voltage, greater penetration/hardness	C1 A1	[2]
			Thigh and to tage, greater perfect and make the		i-j
	(c)	(i)	long-wavelength radiation more likely to be absorbed in the body/less likely to penetrate through body	B1	[1]
		(ii)	(aluminium) filter/metal foil placed in the X-ray beam	B1	[1]
12	(a)	stro eith	ng uniform (magnetic) field er aligns nuclei	M1	
		<i>or</i> nor	gives rise to Larmor/resonant frequency <u>in r.f. region</u> -uniform (magnetic) field	A1 M1	
			er enables nuclei to be located changes the Larmor/resonant frequency	A1	[4]
		OI	Shanges the Lamion/resonant hequency	, (1	[ד]
	(b)	(i)	difference in flux density = $2.0 \times 10^{-2} \times 3.0 \times 10^{-3} = 6.0 \times 10^{-5} \text{ T}$	A1	[1]
		(ii)	$\Delta f = 2 \times c \times \Delta B$	C1	
			= $2 \times 1.34 \times 10^8 \times 6.0 \times 10^{-5}$ = 1.6×10^4 Hz	A1	[2]
					-

	Page 7		,	Mark Scheme: Teachers' version	Syllabus		Paper
	-			GCE AS/A LEVEL – May/June 2012	9702		41
13	(a)	(i) (ii)	for la	nterference (between signals) <u>near boundaries</u> (of cells arge area, signal strength would have to be greater and azardous to health	•	B1	[1] [1]
	(b)	con with	npute n stro	hone is sending out an (identifying) signal r/cellular exchange <u>continuously</u> selects cell/base statingest signal r/cellular exchange allocates (carrier) frequency (and s		M1 A1 A1	[3]