UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

9702 PHYSICS

9702/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9702	43

Section A

1	(a)	region (of space) where a particle / body experiences a force	B1	[1]
	(b)	similarity: e.g. force \propto 1 / r^2 potential \propto 1 / r difference: e.g. gravitation force (always) attractive electric force attractive or repulsive	B1 B1 B1	[1] [2]
	(c)	either ratio is $Q_1Q_2 / 4\pi\epsilon_0 m_1 m_2 G$ = $(1.6 \times 10^{-19})^2 / 4\pi \times 8.85 \times 10^{-12} \times (1.67 \times 10^{-27})^2 \times 6.67 \times 10^{-11}$ = 1.2×10^{36} or $F_E = 2.30 \times 10^{-28} \times R^{-2}$ (C1) $F_G = 1.86 \times 10^{-64} \times R^{-2}$ (C1) $F_E / F_G = 1.2 \times 10^{36}$ (A1)	C1 C1 A1	[3]
2	(a)	amount of substance containing same number of particles as in 0.012kg of carbon-12	M1 A1	[2]
	(b)	pV = nRT amount = $(2.3 \times 10^5 \times 3.1 \times 10^3) / (8.31 \times 290)$ + $(2.3 \times 10^5 \times 4.6 \times 10^3) / (8.31 \times 303)$ = $0.296 + 0.420$ = 0.716mol (give full credit for starting equation $pV = NkT$ and $N = nN_A$)	C1 C1 C1 A1	[4]
3	(a)	charges on plates are equal and opposite so no resultant charge energy stored because there is charge separation	M1 A1 B1	[3]
	(b)	(i) capacitance = Q / V = $(18 \times 10^{3}) / 10$ = $1800 \mu F$	C1 A1	[2]
		(ii) use of area under graph or energy = $\frac{1}{2}CV^2$ energy = $2.5 \times 15.7 \times 10^{-3}$ or energy = $\frac{1}{2} \times 1800 \times 10^{-6} \times (10^2 - 7.5^2)$ = 39 mJ	C1 A1	[2]
	(c)	combined capacitance of Y & Z = $20\mu\text{F}$ or total capacitance = $6.67\mu\text{F}$ p.d. across capacitor X = 8V or p.d. across combination = 12V charge = $10\times10^{-6}\times8$ or $6.67\times10^{-6}\times12$ = $80\mu\text{C}$	C1 C1	[3]

	Pa	ge 3	Mark Scheme: Teachers' version	Syllabus	Pape	er
	<u> </u>	go c	GCE AS/A LEVEL – May/June 2011	9702	43	<u>,, </u>
4	(a)	+q:	J: increase in internal energy thermal energy / heat supplied to the system work done on the system		B1 B1 B1	[3]
	(b)	(i)	(thermal) energy required to change the state of a substate per unit mass without any change of temperature	ance	M1 A1 A1	[3]
		(ii)	when evaporating greater change in separation of atoms/molecules greater change in volume identifies each difference correctly with ΔU and w		M1 M1 A1	[3]
5	(a)	(i)	(induced) e.m.f. proportional to rate of change of (magnetic) flux (linkage) / rate of flux cu	utting	M1 A1	[2]
		(ii)	 moving magnet causes change of flux linkage speed of magnet varies so varying rate of change of flux. magnet changes direction of motion (so current change) 		B1 B1 B1	[1] [1] [1]
	(b)		iod = 0.75s quency = 1.33Hz		C1 A1	[2]
	(c)	gra	ph: smooth correctly shaped curve with peak at f_0 A never zero		M1 A1	[2]
	(d)	(i)	resonance		B1	[1]
		(ii)	e.g. quartz crystal for timing / production of ultrasound		A1	[1]
6	(a)	(i)	$2\pi f = 380$ frequency = 60 Hz		C1 A1	[2]
		(ii)	$I_{\text{RMS}} \times \sqrt{2} = I_0$ $I_{\text{RMS}} = 9.9 / \sqrt{2}$ = 7.0 A		C1 A1	[2]
	(b)	pov	$ver = I^2 R$ = 400 / 7.0 ²		C1	[4]
			- 400 / 7.0 - 8.2 Ω		A1	[2]

	Page 4		Mark	Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2011		9702	43	
7	(a)		length of wave ass s moving	sociated with a particle		M1 A1	[2]
	(b)	(i)	:	= $850 \times 1.6 \times 10^{-19}$ = 1.36×10^{-16} J		M1	
			nomentum = $\sqrt{(1.3)}$ = 1.6	$r p = mv \text{ and } E_K = \frac{1}{2}mv^2$ 36 × 10 ¹⁶ × 2 × 9.11 × 10 ³¹) × 10 ²³ Ns		M1 A0	[2]
		(ii)	L = h / p vavelength = (6.63	3 × 10 ³⁴) / (1.6 × 10 ²³) × 10 ¹¹ m		C1	101
						A1	[2]
	(c)	elec incid fluor	am or description son beam in a vacuent on thin metal tassent screen or concentric rin	uum irget / carbon <u>film</u>		B1 B1 B1 M1	
				tion pattern observed with visible light		A1	[5]
8	(a)	ene to in		rate nucleons in a <u>nucleus</u>		M1 A1	[2]
	(b)	E =				C1	
		=	.66 × 10 ²⁷ × (3.0 : .49 × 10 ¹⁰ J			M1	
			1.49 × 10 ¹⁰) / (1.6 l30 MeV	* 10)		M1 A0	[3]
	(c)	(i)	$\Delta m = 2.0141u - (1.00)$ = -1.9 × 10 ³ u			C1	
			oinding energy = 1 =1	.8 MeV		A1	[2]
		(ii)	= (-)0.69 u	u) + (40 × 1.0073u) – 97.0980u		C1	
			inding energy per	nucleon = (0.69 × 930) / 97 = 6.61 MeV		C1 A1	[3]

Pag	ge 5	Mark Scheme: Teachers' version	Syllabus	Pape	er
		GCE AS/A LEVEL – May/June 2011	9702	43	
ection	В				
		<u>e</u> metal wire shown as a grid		B1 B1	
	•	I in plastic		B1	[3
(b)	(i) gair	n (of amplifier)		B1	[1
($V_{\text{OUT}} = 0$, then $V^+ = V$ or $V_1 = V_2$		C1	
		= (1000/1125) × 4.5 = 4.0 V		C1 A1	[3
(i		= (1000 / 1128) × 4.5 = 3.99 V		C1	
		$_{T} = 12 \times (3.99 - 4.00)$			Γ.
		= (-) 0.12 V		A1	[2
	-	e (uniform) magnetic field	(4)	B1	
radio	o freque	ss / rotate about field direction ncy pulse	(1)	B1	
caus	at Larmor frequency (1) causes resonance / nuclei absorb energy			B1	
puls	e detect	n / de-excitation, nuclei emit r.f. pulse ed and processed	(1)	B1	
		field superposed on uniform field on of resonating nuclei to be determined		B1 B1	
		cation of detection to be changed l each plus any two extra – max 8)	(1)		[8
1 (a)	e a libr	eliable communication	(M1)		
i (a)	bec	ause ion layers vary in height / density	(M1) (A1)		

В1

[1]

Page 6	Mark Scheme: Teachers' version	n Syllabus	Paper 43	
	GCE AS/A LEVEL – May/June 20 ^o	9702		
12 (a) (i)	atio / dB = $10 \lg(P_1 / P_2)$ $4 = 10 \lg(P_1 / \{5.6 \times 10^{-19}\})$ $P_1 = 1.4 \times 10^{-16} \text{ W}$		C1 C1 A1	[3]
(ii)	attenuation per unit length = $1 / L \times 10 \lg(P_1 / P_2)$ $1.9 = 1 / L \times 10 \lg({3.5 \times 10^{-3}}/{1.4 \times 10^{-16}})$ L = 1 km or attenuation = $10 \lg({3.5 \times 10^{-3}}/{5.6 \times 10^{-19}})$ = 158 dB attenuation along fibre = $(158 - 24)$ L = (158 - 24) / 1.9 = 71 km	(C1) (C1) (A1)	C1 C1 A1	[3]

(b) less attenuation (per unit length) / longer uninterrupted length of fibre