UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2008 question paper

9702 PHYSICS

9702/04

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

	Pag	je 2	Mark Scheme Sy		Paper	•
			GCE A/AS LEVEL – May/June 2008 9702			
			Section A			
1	(a)		le (subtended) at centre of circle in arc equal in length to the radius (of the circle)		B1 B1	[2]
	(., .	le swept out per unit time / rate of change of angle he string		M1 A1	[2]
		0.72 W 0.72 mg $\omega = 4.4$ $n = (\omega$	provides / equals the centripetal force = $md\omega^2$ = $m \times 0.35\omega^2$ 49 (rad s ⁻¹) $/2\pi) \times 60$ min ⁻¹ (allow 42)		B1 C1 C1 B1 A1	[5]
		<i>or</i> so flies c	<u>centripetal</u> force increases as <i>r</i> increases <u>centripetal</u> force larger at edge off at edge first w^2 so edge first – treat as special case and allow one <i>r</i>	nark)	M1 A1	[2]
2		change i <i>either</i>	e(s) rebound from wall of vessel / hits walls in momentum gives rise to impulse / force (many impulses) averaged to give constant force / pre the molecules are in random motion	essure	B1 B1 B1	[3]
	(b)		$\frac{1}{3}\rho < c^{2} >$ $2 \times 10^{5} = \frac{1}{3} \times 0.900 \times < c^{2} >$		C1	
		< <i>c</i> ² >	$= 3.4 \times 10^5$ $= 580 \text{ m s}^{-1}$		C1 A1	[3]
	($er < c^2 > \infty$ T or $< c^2 > = 2 \times 3.4 \times 10^5$ s = 830 m s ⁻¹ (allow 820)		C1 A1	[2]
		c _{RMS} dep so no eff	ends on temperature (alone) fect		B1 B1	[2]

	Pa	ige 3	}	Mark Scheme	Syllabus	Paper	
				GCE A/AS LEVEL – May/June 2008	9702	04	
3	(a)	(i)	amp	litude = 0.5 cm		A1	[1]
		(ii)		A1	[1]		
	(b)	(i)		$2\pi / T$ 7.85 rad s ⁻¹		C1	
			corre	ect use of $v = \omega \sqrt{(x_0^2 - x^2)}$ 7.85 × $\sqrt{(\{0.5 \times 10^{-2}\}^2 - \{0.2 \times 10^{-2}\}^2)}$		B1	
			= (if ta 3.6 :	3.6 cm s ⁻¹ ngent drawn or clearly implied (B1) ± 0.3 cm s ⁻¹ (A2) allow 1 mark for > ± 0.3 but $\leq \pm 0.6$ cm s ⁻¹)		A1	[3]
		(ii)	d =	15.8 cm		A1	[1]
	(c)	(i)	•	tinuous) loss of energy / reduction in litude (from the oscillating system)		B1	
			caus	sed by force acting in opposite direction to the motion / ous forces	' friction /	B1	[2]
		(ii)	line	e period / small increase in period displacement always less than that on Fig.3.2 <i>(ignore s</i> c <u>progressively</u> smaller	first T/4)	B1 M1 A1	[3]
4	(a)			ne moving unit positive charge nity to the point		M1 A1	[2]
	(b)	(i)	<i>x</i> =	18 cm		A1	[1]
		(ii)	(3.6 q =	$V_{\rm B} = 0$ × 10 ⁻⁹) / (4 $\pi \varepsilon_0$ × 18 × 10 ⁻²) + q / (4 $\pi \varepsilon_0$ × 12 × 10 ⁻²) = 0 -2.4 × 10 ⁻⁹ C of $V_A = V_B$ giving 2.4 × 10 ⁻⁹ C scores one mark))	C1 C1 A1	[3]
	(c)	ford	ce =	ngth = (–) gradient of graph charge × gradient / field strength or force ∞ gradient gest at x = 27 cm		B1 B1 B1	[3]
5	(a)	at $t = 1.0$ s, $V = 2.5$ V energy = $\frac{1}{2}CV^2$ $0.13 = \frac{1}{2} \times C \times (8.0^2 - 2.5^2)$ $C = 4500 \mu\text{F}$					[3]
	(b)	 use of two capacitors in series in all branches of combination connected into correct parallel arrangement 					

Pa		ige 4				Mark Scheme	Syllabus	Paper	•
			GCE A/AS LEVEL – May/June 2008 9702				9702	04	
6	(a)	par	allel (to the field)				B1	[1]
	(b)	(i)	2.1 > F =	ue = $F \times d$ × 10 ⁻³ = $F \times d$ 0.075 N e of 4.5 cm s				C1 A1	[2]
		(ii)	zero					A1	[1]
	(c)	0.0	75 =	<i>N</i> (sinθ) <i>B</i> × 0.170 > × 10 ⁻² T =		0 ⁻² × 140		C1 M1 A0	[2]
	(d)	(i)	•	uced) <u>e.m.f.</u> gnetic) flux (· ·	rtional to / equal to <u>rate of change</u>	<u>e</u> of	M1 A1	[2]
		(ii)	char	nge in flux lii	=	<i>BAN</i> 0.070 × 4.5 × 10^{-2} × 2.8 × 10^{-2} > 0.0123 Wb turns	× 140	C1	
			indu	ced e.m.f =	0.0123			C1	101
			•	e: This is a	•	d treatment. A full treatment wouling to a $\sqrt{2}$ factor)	uld involve the	A1	[3]
7	(a)	cha	rge is	s quantised .	/ discrete	quantities		B1	[1]
	(b)	(i)				ic field is uniform / constant oil drop will not drift sideways field is vertical		B1	
					or	electric force is equal to weight		B1	[2]
		(ii)	$q \times 8$	= <i>mg</i> 350 / (5.4 × 4.8 × 10 ⁻¹⁹		$7.7 \times 10^{-15} \times 9.8$ <u>negative</u>		C1 C1 A1	[3]
	(c)	charge changes by 1.6×10^{-19} C between droplets / integral multiples so charge on electron is 1.6×10^{-19} C				nultiples	M1 A0	[1]	
8	(a)	since momentum before combining is zero momenta must be equal and opposite after <u>equal momenta so</u> photon energies equal					B1 B1 B1	[3]	
	(b)) $E = mc^2$				C1			
	()	$= 9.1 \times 10^{-31} \times (3.0 \times 10^{8})^{2}$ = 8.19 × 10 ⁻¹⁴ (J)				C1			
		=	= (8.1	9 × 10 (3) 19 × 10 ⁻¹⁴) / 1 MeV) ⁻¹³)		A1	[3]

	Page 5	Mark Scheme	Syllabus	Paper	•		
		GCE A/AS LEVEL – May/June 2008	9702	04			
		Section B					
9	(a) blocks labelled sensing device / sensor / transducer processor / processing unit / signal conditioning						
		LEDs with opposite polarities (ignore any series resist ectly identified as red and green	tors)	M1 A1	[2]		
	• •	ect polarity for diode to conduct identified ce red LED conducts when input (+)ve or <i>vice versa</i>		M1 A0	[1]		
10	nuclei rotate	g (constant) magnetic field about direction of field / precess (1) ncy / r.f. pulse		B1 B1			
	causes resor (pulse) is at t on relaxation detected <u>anc</u>	nance in nuclei , nuclei absorb energy(1)the Larmor frequency(1)/ nuclei de-excite emit (pulse of) r.f.(1)processed(1)		B1 B1			
	allows for po and for locat	field (superimposed) sition of nuclei to be determined ion of detection to be changed (1) two extra details, 1 each, max 2)		B1 B1 B2	[8]		
11		uency of carrier wave varies ynchrony with <u>displacement</u> of information signal		M1 A1	[2]		
	(ii) 1. 2.	zero (accept constant) upper limit 530 kHz lower limit 470 kHz	-1	B1 B1 B1	[1]		
	mor larg	changes upper limit \rightarrow lower limit \rightarrow upper limit at 800 e radio stations required / shorter range e complex electronics er bandwidth required o sensible suggestions, 1 each)	JUS	B1 B2	[3]		
12	(a) (i) pick	ing up of signal in one cable		M1			
	(ii) <u>rano</u> that	n a second (nearby) cable <u>dom</u> (unwanted) signal / power masks / added to / interferes with / distorts transmitted ow this mark in (i) or (ii))	d signal	A1 B1 B1	[2] [2]		
	30 = 10 P = 6.5 loss alor	ower at receiver, $Dlg(P / (6.5 \times 10^{-6}))$ $5 \times 10^{-3} W$ $mg cable = 10lg({26 × 10^{-3}} / {6.5 × 10^{-3}})$ = 6.0 dB = 6.0 / 0.2 = 30 km		C1 C1 C1 C1 A1	[5]		