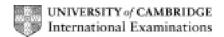
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2009 question paper for the guidance of teachers

9702 PHYSICS

9702/21


Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page		де 2	Mark Scheme: Teachers' version	Syllabus	Paper
	.		GCE A/AS LEVEL – May/June 2009 970		21
1	(a)	(i)	micrometer (screw gauge) / travelling microscope	B1	[1]
	(. ,	either ohm-meter or voltmeter and ammeter or multimeter/avo on ohm setting	B1	[1]
	(iii)	either (calibrated) c.r.o. or a.c. voltmeter and $\times \sqrt{2}$	B1	[1]
	(b)	dens	sity = mass / volume = 580 / 6 ³ = 2.685 g cm ⁻³ (<i>allow 2.68, 2.69, 2.7</i>)	C1 A1	
		% uı	ncertainty in mass = (10 / 580) × 100 = 1.7%		
		dens	sity = 2.7 ± 0.2 g cm ⁻³	A1	[5]
2	(a)	ball	moving in <u>opposite</u> direction (after collision)	B1	[1]
	(b)	(i)	change in momentum = 1.2 (4.0 + 0.8)(correct values, 1 mark; correct sign {values added}, 1 n	nark)	
		/ii\	$= 5.76 \text{ N s }(allow 5.8) \dots$ force $= \Delta p / \Delta t \qquad \text{or } m\Delta v / \Delta t \qquad \dots$		[3]
	,	('' <i>')</i>	$= 5.76 / 0.08 \text{ or } 1.2 \times 4.8 / 0.08$ $= 72 \text{ N}$	C1	[3]
			= 3.6 × V		
		V =	1.6 m s ⁻¹	A1	[2]
	(d)	eithe	er speed of approach = 4.0 m s ⁻¹ and speed of separation = 2.4 m s ⁻¹		
		or	not equal and so inelastickinetic energy before = 9.6 J and	A1	
			kinetic energy after collision = 4.99 Jkinetic energy after is less / not conserved so inelasti		[2]
3		•	luct of (magnitude of one) force and distance between forces to either perpendicular distance between forces	orces M1	
		. 3.01	or line of action of forces and perpendicular dist	tance A1	[2]
	(b)	(i)	90°	B1	[1]
	($130 = F \times 0.45$ (allow e.c.f. for angle in (i)) F = 290 N (allow 1 mark only if angle stated in (i) is not used in (ii))	A1	[2]

Pa		nge 3		Mark Scheme: Teachers' version Syllab		Paper
		_			702	21
4	(a)	(i)		nge of shape / size / length / dimension		
			whe	n (deforming) force is removed, returns to original shape / siz	e A1	[2]
		/ •••	,	1	D 4	F 4 7
		(ii)	L = 1	ke	. B1	[1]
	(h)	20			. B1	
	(0)	2e 1/2k		allow e.c.f. from extension)		
		/2/\	(c	allow c.c.r. from extension;		
		½e	and 2	2k	. B1	
		, 20				
		³ e	(á	allow e.c.f. from extension in part 2)	. B1	
		_				
		$\frac{2}{3}K$	(ć	allow e.c.f. from extension)	. B1	[5]
5	(a)			hase difference is π rad / 180°		
				difference (between waves from S_1 and S_2) is $\frac{1}{2}\lambda/(n + \frac{1}{2})\lambda$. B1	
				me amplitude / intensity at M		
		<i>or</i> r	ratio c	of amplitudes is 1.28 / ratio of intensities is 1.28 ²	. B1	[2]
	/ b\	n 0.4	p 4:tt	propos between wayon from S. and S 20 am	D4	
	(n)			erence between waves from S_1 and $S_2 = 28$ cmgth changes from 33 cm to 8.25 cm		
				α when λ = (56 cm,) 18.7 cm, 11.2 cm, (8.0 cm)		
				ninima		[4]
		55				ניין
6	(a)	(i)	E=	V/d	. C1	
		- •	= 35	50 / (2.5 × 10 ⁻²)		
			= 1.4	4 × 10 ⁴ N C ⁻¹ /	. A1	[2]
			_	<u>_</u>		
		(ii)	force	e = <i>Eq</i> 4 × 10 ⁻¹⁹	. C1	
			= 1.4	4 × 10 ⁻¹ × 1.6 × 10 ⁻¹⁰	. M1	
			= 2.2	24 × 10 ⁻¹⁵	. A0	[2]
	(h)	/i\	F=	ma	. C1	
	(1)	(')	, -, a=	ma(2.24 × 10 ⁻¹⁵) / (9.1 × 10 ⁻³¹)	. 01	
			= 2	$46 \times 10^{15} \mathrm{m s^{-2}} \dots (allow 2.5 \times 10^5) \dots$. A1	[2]
						[4]
		(ii)	s = 1	/₂af²	. C1	
		. ,	2.5	$\times 10^{-2} = \frac{1}{2} \times 2.46 \times 10^{15} \times t^2$		
			<i>t</i> = 4	l.5 × 10 ⁻⁹ s	. A1	[2]
	(c)		_	ravitational force is normal to electric force	D.C	
		or		lectric force horizontal, gravitational force vertical		[2]
		-		case: force/acceleration due to electric field >> force/acceleration	uon	
		aue	ະ ເບ gi	ravitational field, allow 1 mark		

	Page 4	Mark Scheme: Teachers' version	Syllabus	Paper		
		GCE A/AS LEVEL – May/June 2009	9702	21		
7	(a) (i) R		B1	[1]		
	(ii) 0.5 <i>F</i>	?	B1	[1]		
	(iii) 2.5 <i>F</i>	R(allow e.c.f. from (ii))	B1	[1]		
	(b) (i) I_1 +	$I_2 = I_3$	B1	[1]		
	(ii) $E_2 =$	$I_3R + I_2R$	B1	[1]		
	(iii) E ₁ –	$E_2 = 2I_1R - I_2R \qquad \dots$	B1	[1]		
8	(a) rate of decay / activity / decay (of nucleus) is not affected by external factors / environment / surroundings					
	(b) (i) gam	ıma / γ	B1	[1]		
	(ii) alph	a/α	B1	[1]		
	(iii) gam	ıma / γ	B1	[1]		
	(iv) beta	ι/β	B1	[1]		