

A LEVEL Physics

PHA6/B6/X – Investigative and practical skills in A2 Physics Mark Scheme

2450/2455June 2015

Version 1: Final Mark Scheme

PHYAB6: Practical and Investigative Skills in A2 Physics

Section	Section A Task 1				
	(a) (i) and (ii)	results:	T_1 and T_2 , each from nT where n or $\Sigma n \ge 20$, consistent recording of nT sensible values to 0.1 s or 0.01 s T_1 must be > $T_2 \checkmark$ withhold this mark if the same criteria are not applied in question 2 where T_3 must be > T_4 withhold mark if no unit is seen in 1(a) and in 2(a)(i)/(ii)	1	
	(b)(i)	assumption:	springs have same stiffness [spring constant] ✓	1	
1	(b)(ii)	method:	evaluates k_1 and k_2 ; correct substitution of T_1 , T_2 and $m_1 \checkmark$ (allow $m = 200$ g and don't penalise for missing / wrong unit for k) correctly evaluates $\frac{k_2}{k_1}$ and compares with 2 [correctly calculates percentage difference between $\frac{k_2}{k_1}$ and predicted outcome (of 2) / correctly evaluates $2k_1$ and compares with k_2 etc] $_2\checkmark$ [evaluates $\sqrt{2} \times \frac{T_2}{T_1}$ $_1\checkmark$; compares with 1 [correctly calculates percentage difference between $\sqrt{2} \times \frac{T_2}{T_1}$ and predicted outcome (of 1) $_2\checkmark$] [evaluates T_2^2 and T_1^2 $_1\checkmark$; correctly evaluates T_2^2 and predicted outcome (of 2) $_2\checkmark$] [evaluates T_2^2 and T_1^2 $_1\checkmark$; correctly calculates percentage difference between T_1^2 and predicted outcome (of 2) $_2\checkmark$] [evaluates T_2^2 and T_1^2 $_1\checkmark$; correctly evaluates T_2^2 and T_1^2 $_1\checkmark$; T_2^2 [correctly calculates percentage difference between result and predicted outcome (of 1) $_2\checkmark$]	2	
		conclusion:	result in (a) produces $\left(\frac{T_1}{T_2}\right)^2$ in range 1.95 to 2.05 or 2.0 $_3\checkmark$ states that prediction is correct $_4\checkmark$ [result in (a) produces $\left(\frac{T_1}{T_2}\right)^2 < 1.90$ or > 2.10 ; states that prediction is incorrect $_{34}\checkmark$; $\left(\frac{T_1}{T_2}\right)^2$ between 1.90 to 1.95 or between 2.05 to 2.10; can state either that prediction is correct or incorrect $_{34}\checkmark$]	2	

1	(c)(i)	explanation:	use of average increase in period = $3.2 \%_{1} \checkmark$ $T^{2} \propto m \therefore 1.032^{2} = \frac{m+d}{m}$ where $m = 0.200 \text{ kg } [200 \text{ g}] \text{ and } d = \text{mass of dvd }_{2} \checkmark$ solves to $\frac{\text{show}}{d} = 13(.0) \text{ g}_{3} \checkmark$ $[T^{2} \propto m \therefore 1.031^{2} = \frac{m+d}{m} \text{ to show } d = 12.6 \text{ g}$ or $T^{2} \propto m \therefore 1.033^{2} = \frac{m+d}{m} \text{ to show } d = 13.4 \text{ g earns }_{23} \checkmark \checkmark;$ for both calculations $\frac{\text{and averaging leading to } d = 13(.0) \text{ g }_{1} \checkmark]$ [use of $1.031T_{1}$ with correct substitution of T_{1} and K_{1} (and 2π) to calculate new mass (found in (b)(ii)); $d = \text{new mass} - 0.200 \text{ kg};$ solves to show $d \approx 13(.0) \pm 1(.0) \text{ g}$ or use of $1.033T_{2}$ with correct substitution of T_{2} and K_{2} (and 2π) etc to show $d \approx 13(.0) \pm 1(.0) \text{ g earns }_{23} \checkmark \checkmark;$ for both calculations and averaging leading to $d = 13(.0) \pm 1(.0) \text{ g }_{1} \checkmark]$ (note that results obtained using own data may not work out	3
	(c)(ii)	explanation:	to be 12.6 and 13.4; allow for truncated <i>k</i> values) student has not taken account of the mass of the nut [bolt / hooks / paperclips] ✓	1

valid procedure ₁√ with appropriate explanation ₂√ • explanation mark is only awarded when it is relevant to a correct procedure • one procedure/explanation allowed per response • no credit for conflicting statements or wrong physics any two from: time multiple oscillations [lengthen time over which timing carried out] ₁√ to reduce percentage error (condone 'uncertainty' (in period)) [to reduce the impact [effect] of human [random] error / reaction time] ₂√ and/or repeat (timing measurements) ₁√ to detect anomalous results so these can be eliminated ₂√ (reject 'to reduce impact [effect] of anomalous results') and/or use 'count down' technique ₁√ to reduce chance of systematic error [miscounting cycles] ₂√ and/or set oscillator in motion but wait before starting timing [until transient oscillations have dissipated] ₁√ to ensure period is constant ₂√ and/or use a fiducial mark at the centre of oscillation (can be shown in a sketch but the fiducial mark must be at the free end of the ruler) ₁√ since this is where transit time is least [oscillator is moving fastest] ₂√ and/or view oscillations at right angles to the motion ₁√ to reduce parallax error ₂√ and/or ensured that amplitude of oscillations was small ₁√ so period was constant [to ensure shm / to ensure springs obey Hooke's Law] ₂√		(a)(iii)	accuracy:	k in range 3.74 to 4.58 or 2sf between 3.8 and 4.5 $_{1}$ $^{-2}$ $_{2}$ (answers with cm ⁻² should be ×10 ⁻⁴) max 4sf: note that this is the only part of Section A where excessive sf are penalised for x_{2} = 300 mm mark as follows: k in range 3.81 to 4.65 or 2sf between 3.9 and 4.6 $_{1}$	2
	2	(b)	explanation:	 explanation mark is only awarded when it is relevant to a correct procedure one procedure/explanation allowed per response no credit for conflicting statements or wrong physics any two from: time multiple oscillations [lengthen time over which timing carried out] ₁√ to reduce percentage error (condone 'uncertainty' (in period)) [to reduce the impact [effect] of human [random] error / reaction time] ₂√ and/or repeat (timing measurements) ₁√ to detect anomalous results so these can be eliminated ₂√ (reject 'to reduce impact [effect] of anomalous results') and/or use 'count down' technique ₁√ to reduce chance of systematic error [miscounting cycles] ₂√ and/or set oscillator in motion but wait before starting timing [until transient oscillations have dissipated] ₁√ to ensure period is constant ₂√ and/or use a fiducial mark at the centre of oscillation (can be shown in a sketch but the fiducial mark must be at the free end of the ruler) ₁√ since this is where transit time is least [oscillator is moving fastest] ₂√ and/or view oscillations at right angles to the motion ₁√ to reduce parallax error ₂√ and/or ensured that amplitude of oscillations was small ₁√ so period was constant [to ensure shm / to ensure springs 	MAX 4

16

1	(a)	accuracy:	V_0 , value sensible, to nearest 0.1 V or to nearest 0.01 V \checkmark deduct SF mark in (b) if inconsistent precision between (a) and (b); unit must be supplied	1
	(b)	tabulation:	V_1 /V V_2 /V t /s \checkmark deduct this mark for any missing label or separator; accept all data in one single table or separate tables for V_1 and V_2 with t to appear in each (don't penalise here and in (a) for missing unit with V)	1
		results:	at least 7 sets of V_1 and t including $t = 0$, $V_1 = V_0$ (\pm 1%) and $t = 60$ (eg average interval of $10 \mathrm{s}$) $_1\checkmark$ at least 7 sets of V_2 and t including $t = 0$, $V_2 = 0(.00)$, and $t = 60$ (eg average interval of $10 \mathrm{s}$) $_2\checkmark$ at least 6 sets of V_1 and 6 sets of V_2 , average interval of $10 \mathrm{s}$ but missing $t = 0$ data $_{12}\checkmark$ both V_1 and V_2 from repeated readings $_3\checkmark$ deduct 1 mark if t is not in the left-hand column of a coherent table [in two tables if V_1 and V_2 are shown separately t in the top row where the data is arranged in rows]	3
		significant figures:	all (raw) V to nearest 0.1 V or all to nearest 0.01 V ; tolerate $V_2 = 0$ (ie 1 sf) at $t = 0$	1
1	(c)	axes:	marked V/V (vertical) and t/s (horizontal) deduct ½ for each missing label or separator, rounding down; no mark if axes reversed either or both marks may be lost if the interval between the numerical values is marked with a frequency of > 5 cm	2
		scales:	points should cover at least half the grid horizontally \checkmark and half the grid vertically \checkmark (the origin must be shown on this graph unless the $t=0$ data set has not been tabulated; either or both marks may be lost for use of a difficult or non-linear scale)	2
		points:	all tabulated points plotted correctly (check at least two on each line including any anomalous points) 1 mark is deducted for every point missing and for every point > 1 mm from correct position deduct 1 mark if any point is poorly marked; no credit for false data	3
		V₁ line and quality:	smooth curve of decreasing negative gradient commencing at $V_1 = V_0$ at $t = 0$ s and continuing to $t = 60$ s, suitably labelled; at least 6 points to \pm 2mm of a suitable line, adjusting for any mis-plots; adjust \pm 2mm criterion if the graph is poorly scaled \checkmark	1

V_2 line and quality:	smooth curve of decreasing positive gradient rising from $V_2 = 0$ at $t = 0$ s to a peak between $t = 25$ s and $t = 40$ s then smooth curve of increasing negative gradient continuing to $t = 60$ s, suitably labelled; at least 6 points to ± 2 mm of a suitable line, adjusting etc \checkmark	1
		15

Sec	tion B		
1	(a)(i)	valid attempt at gradient calculation and correct transfer of data or $_{12}\checkmark=0$ tangent [normal] drawn to V_2 curve where $V_1=V_2$ and correct transfer of y -and x -step between graph and calculation $_1\checkmark$ (mark is withheld if points used to determine either step > 1 mm from correct position on grid; if tabulated points are used these must lie on the line) y -step and x -step both at least 8 semi-major grid squares [5 by 13 or 13 by 5] $_2\checkmark$ (if a poorly-scaled graph is drawn the hypotenuse of the gradient triangle should be extended to meet the 8 × 8 criteria)	2
1	(a)(ii)	$\frac{V_{\rm e}}{G}$, at least 2 sf, in range 35.2 s to 47.6 s [accept 2 sf in range 36 to 47] $\checkmark\checkmark$ [29.0 s to 53.8 s or 2 sf in range 30 to 35, or in range 48 to 53 \checkmark]	2
1	(b)(i)	$\frac{R_2}{R_1}$, no unit, in range 2.03 to 2.25, 2.1 or 2.2 \checkmark min 2 sf and max 4sf answer: note that this is the only part of Section B where excessive sf are penalised	1
1	(b)(ii)	V_1 contributes most to the percentage uncertainty in $\frac{R_2}{R_1}$ or $0/2$: (when V_2 is a maximum) V_1 is smaller (than V_2) $_1\checkmark$ idea that a small error in the estimation of the time where V_2 is a maximum produces a large error in V_1 $_2\checkmark$	2
1	(b)(iii)	tick next to No current is flowing (only); accept other clear means of identifying this response ✓	1
1	(b)(iv)	(since $\frac{V_2}{V_1} = \frac{R_2}{R_1}$) current in R1 = current in R2 $_1\checkmark$ current flowing in to terminal Y = current flowing out of terminal Y (hence no current can flow to C2 from Y or in to Y from C2) $_2\checkmark$ [from $Q = C \times V$; $\frac{dQ}{dt} = C \times \frac{dV}{dt}$; $I = C \times \frac{dV}{dt}$ $_1\checkmark$ when $\frac{dV}{dt} = 0$, $I = 0$ $_2\checkmark$] [current reverses after the moment that V_2 is a maximum or before (V_2 is a maximum) the current is towards C2 [away from Y / C2 charges up] and after (V_2 is a maximum) the current is away from C2 [towards Y / current reverses / C2 discharges] $_{12}\checkmark$ = 1 MAX]	2

1	(c)	curve of decreasing negative gradient (allow straight line of negative gradient) starting at (0, 3.95 ± 0.05) $_1\checkmark$ ending at (60, 2.70 ± 0.05) $_2\checkmark$	2
---	-----	---	---

2	(a)	systematic error in <i>y</i> would produce a (non-zero) intercept [graph is transformed / line shifted / points shifted by the same amount] ✓	1	
	(b)(i)	either kg s ⁻² or N m ⁻¹ or J m ⁻² ✓		
	(b)(ii)	gradient is increased [steeper] or $0/2_1$ (for same x,) y values are proportionally bigger [bigger by same fraction], or (for same y,) x values are proportionally smaller [smaller by same fraction, or because $\frac{2s\gamma}{gt\rho}$ is the gradient] 2		
	(c)	plot $\left(h+\frac{r}{3}\right)$ against $\frac{1}{r}$ or vice-versa; the suggested plot must be linear $_1\checkmark$ [other variations are possible] valid method of obtaining γ using the gradient of the graph, eg for $\left(h+\frac{r}{3}\right)$ on vertical axis against $\frac{1}{r}$, gradient = $\frac{2\gamma}{g\rho}$ (hence γ = gradient × $\frac{g\rho}{2}$) $_2\checkmark$	2	
	(d)(i)	$I_1 \ (= R_2 - R_1 = 11.51 - 2.92) = 8.59 \ \text{cm} \ \text{and} \ I_2 \ (= R_4 - R_3 = 9.07 - 3.85) = 5.22 \ \text{cm} \ [I_1 - I_2 = 3.37 \ \text{cm}]_{1} \ \checkmark \ (\text{reject truncation to 2sf 8.6 and 5.2})$ method: $r = \sqrt{\frac{m}{\rho \pi (l_1 - l_2)}} \ \left[r^2 = \frac{m}{\rho \pi (l_1 - l_2)} \right]_{2} \ \checkmark$ $r = 1.36 \times 10^{-3} \ \text{m} \ [1.359 \times 10^{-3} \ \text{m to 4sf}]_{3} \ \checkmark \ (\text{ecf for wrong } _{1} \ \checkmark \ \text{but no credit for POT errors; reject 2sf 1.4 } \times 10^{-3} \ \text{m unless} \ \text{data has been truncated to lose}_{1} \ \checkmark)$	3	
	(d)(ii)	uncertainty in $(l_1 - l_2) = \pm 0.20$ cm $_1\checkmark$ percentage uncertainty in $(l_1 - l_2) = \left[\frac{0.20}{3.37} \times 100\right]$ (= 5.9(3) % or 6 %) $_2\checkmark$ (ecf if uncertainty in $(l_1 - l_2) = \pm 0.10$ cm) percentage uncertainty in r (= 0.5 × percentage uncertainty in $(l_1 - l_2)$) = 2.9(7) % [accept 2sf 3.0 % or 1sf 3 %] $_3\checkmark$ (ecf for wrong $_2\checkmark$; reject 2.9 %)	3	
	•		24	

24