AQA

A LEVEL

Physics

PHA6/B6/X - Investigative and practical skills in A2 Physics Mark Scheme

2450/2455
June 2015

Version 1: Final Mark Scheme

PHYAB6: Practical and Investigative Skills in A2 Physics

Section A Task 1				
1	(a) (i) and (ii)	results:	T_{1} and T_{2}, each from $n T$ where n or $\Sigma n \geq 20$, consistent recording of $n T$ sensible values to 0.1 s or 0.01 s T_{1} must be $>T_{2} \checkmark$ withhold this mark if the same criteria are not applied in question 2 where T_{3} must be $>T_{4}$ withhold mark if no unit is seen in 1 (a) and in 2(a)(i)/(ii)	1
	(b)(i)	assumption:	springs have same stiffness [spring constant] \checkmark	1
	(b)(ii)		evaluates k_{1} and k_{2}; correct substitution of T_{1}, T_{2} and $m_{1} \checkmark$ (allow $m=200 \mathrm{~g}$ and don't penalise for missing / wrong unit for k) correctly evaluates $\frac{k_{2}}{k_{1}}$ and compares with 2 [correctly calculates percentage difference between $\frac{k_{2}}{k_{1}}$ and predicted outcome (of 2)/ correctly evaluates $2 k_{1}$ and compares with k_{2} etc] 2^{r}	
		method:	[evaluates $\sqrt{2} \times \frac{T_{2}}{T_{1}}, ~ \checkmark$; compares with 1 [correctly calculates percentage difference between $\sqrt{2} \times \frac{T_{2}}{T_{1}}$ and predicted outcome (of 1) ${ }_{2} \sqrt{ }$] [evaluates $T_{2}{ }^{2}$ and $T_{1}{ }^{2}{ }_{1} \downarrow$; correctly evaluates $\frac{T_{1}^{2}}{T_{2}^{2}}$ [correctly calculates percentage difference between $\frac{T_{1}^{2}}{T_{2}^{2}}$ and predicted outcome (of 2) ${ }_{2} \checkmark$] [evaluates $T_{2}{ }^{2}$ and $T_{1}{ }^{2}{ }_{1} \vee$; correctly evaluates $2 \times \frac{T_{2}^{2}}{T_{1}^{2}}$ [correctly calculates percentage difference between result and predicted outcome (of 1) ${ }_{2} \checkmark$]	2
		conclusion:	result in (a) produces $\left(\frac{T_{1}}{T_{2}}\right)^{2}$ in range 1.95 to 2.05 or $2.0_{3} \downarrow$ states that prediction is correct ${ }_{4} \checkmark$ [result in (a) produces $\left(\frac{T_{1}}{T_{2}}\right)^{2}<1.90$ or >2.10; states that prediction is incorrect ${ }_{34} \checkmark$; $\left(\frac{T_{1}}{T_{2}}\right)^{2}$ between 1.90 to 1.95 or between 2.05 to 2.10; can state either that prediction is correct or incorrect ${ }_{34} \checkmark$]	2

2	(a)(iii)	accuracy:	k in range 3.74 to 4.58 or 2 sf between 3.8 and $4.5{ }_{1} \checkmark$ $\mathrm{m}^{-2}{ }_{2} \checkmark$ (answers with cm^{-2} should be $\times 10^{-4}$) $\max 4 \mathrm{sf}$: note that this is the only part of Section A where excessive sf are penalised for $x_{2}=300 \mathrm{~mm}$ mark as follows: k in range 3.81 to 4.65 or 2 sf between 3.9 and $4.6{ }_{1} \checkmark$	2
	(b)	explanation:	valid procedure $1_{1} \checkmark$ with appropriate explanation 2^{\checkmark} - explanation mark is only awarded when it is relevant to a correct procedure - one procedure/explanation allowed per response - no credit for conflicting statements or wrong physics any two from: time multiple oscillations [lengthen time over which timing carried out] ${ }_{1} \checkmark$ to reduce percentage error (condone 'uncertainty' (in period)) [to reduce the impact [effect] of human [random] error / reaction time] ${ }_{2} \checkmark$ and/or repeat (timing measurements) 1^{\checkmark} to detect anomalous results so these can be eliminated ${ }_{2} \checkmark$ (reject 'to reduce impact [effect] of anomalous results') and/or use 'count down' technique ${ }_{1} \checkmark$ to reduce chance of systematic error [miscounting cycles] 2^{\checkmark} and/or set oscillator in motion but wait before starting timing [until transient oscillations have dissipated] 1^{\checkmark} to ensure period is constant ${ }_{2} \checkmark$ and/or use a fiducial mark at the centre of oscillation (can be shown in a sketch but the fiducial mark must be at the free end of the ruler) ${ }_{1}$ since this is where transit time is least [oscillator is moving fastest] 2^{\checkmark} and/or view oscillations at right angles to the motion $1_{1} \checkmark$ to reduce parallax error ${ }_{2} \checkmark$ and/or ensured that amplitude of oscillations was small ${ }_{1} \checkmark$ so period was constant [to ensure shm / to ensure springs obey Hooke's Law] ${ }_{2} \downarrow$	MAX 4
				16

AQA

Section A Task 2

1	(a)	accuracy:	V_{0}, value sensible, to nearest 0.1 V or to nearest $0.01 \mathrm{~V} \checkmark$ deduct SF mark in (b) if inconsistent precision between (a) and (b); unit must be supplied	1
1		tabulation:	$\begin{array}{lllllll}V_{1} & / V & V_{2} & / V & t & / s & \checkmark\end{array}$ deduct this mark for any missing label or separator; accept all data in one single table or separate tables for V_{1} and V_{2} with t to appear in each (don't penalise here and in (a) for missing unit with V)	1
	(b)	results:	at least 7 sets of V_{1} and t including $t=0, V_{1}=V_{0}(\pm 1 \%)$ and $t=60$ (eg average interval of 10 s$)_{1}$ at least 7 sets of V_{2} and t including $t=0, V_{2}=0(.00)$, and $t=60(\text { eg average interval of } 10 \mathrm{~s})_{2} \downarrow$ at least 6 sets of V_{1} and 6 sets of V_{2}, average interval of 10 s but missing $t=0$ data ${ }_{12} \checkmark$ both V_{1} and V_{2} from repeated readings ${ }_{3} \checkmark$ deduct 1 mark if t is not in the left-hand column of a coherent table [in two tables if V_{1} and V_{2} are shown separately / in the top row where the data is arranged in rows]	3
		significant figures:	all (raw) V to nearest 0.1 V or all to nearest 0.01 V ; tolerate $V_{2}=0$ (ie 1 sf) at $\mathrm{t}=0$	1
	(c)	axes:	marked V/V (vertical) and t / s (horizontal) deduct $1 / 2$ for each missing label or separator, rounding down; no mark if axes reversed either or both marks may be lost if the interval between the numerical values is marked with a frequency of $>5 \mathrm{~cm}$	2
		scales:	points should cover at least half the grid horizontally \checkmark and half the grid vertically (the origin must be shown on this graph unless the $t=0$ data set has not been tabulated; either or both marks may be lost for use of a difficult or non-linear scale)	2
		points:	all tabulated points plotted correctly (check at least two on each line including any anomalous points) 1 mark is deducted for every point missing and for every point > 1 mm from correct position deduct 1 mark if any point is poorly marked; no credit for false data	3
		V_{1} line and quality:	smooth curve of decreasing negative gradient commencing at $V_{1}=V_{0}$ at $t=0 \mathrm{~s}$ and continuing to $t=60 \mathrm{~s}$, suitably labelled; at least 6 points to $\pm 2 \mathrm{~mm}$ of a suitable line, adjusting for any mis-plots; adjust $\pm 2 \mathrm{~mm}$ criterion if the graph is poorly scaled \checkmark	1

		smooth curve of decreasing positive gradient rising from $V_{2}=0$ at $t=0$ s to a peak between $t=25 \mathrm{~s}$ and $t=40 \mathrm{~s}$ then quality:	smooth curve of increasing negative gradient continuing to $t=60 \mathrm{~s}$, suitably labelled; at least 6 points to $\pm 2 \mathrm{~mm}$ of a suitable line, adjusting etc \checkmark

Section B			
1	(a)(i)	valid attempt at gradient calculation and correct transfer of data or ${ }_{12} \checkmark=0$ tangent [normal] drawn to V_{2} curve where $V_{1}=V_{2}$ and correct transfer of y and x-step between graph and calculation ${ }_{1}$ (mark is withheld if points used to determine either step > 1 mm from correct position on grid; if tabulated points are used these must lie on the line) y-step and x-step both at least 8 semi-major grid squares [5 by 13 or 13 by 5] 2^{\checkmark} (if a poorly-scaled graph is drawn the hypotenuse of the gradient triangle should be extended to meet the 8×8 criteria)	2
1	(a)(ii)	$\frac{V_{\mathrm{e}}}{G}$, at least 2 sf , in range 35.2 s to 47.6 s [accept 2 sf in range 36 to 47] [29.0 s to 53.8 s or 2 sf in range 30 to 35 , or in range 48 to $53 \checkmark$]	2
1	(b)(i)	$\frac{R_{2}}{R_{1}}$, no unit, in range 2.03 to $2.25,2.1$ or 2.2 min 2 sf and max 4sf answer: note that this is the only part of Section B where excessive sf are penalised	1
1	(b)(ii)	V_{1} contributes most to the percentage uncertainty in $\frac{R_{2}}{R_{1}}$ or 0/2: (when V_{2} is a maximum) V_{1} is smaller (than $\left.V_{2}\right)_{1} \checkmark$ idea that a small error in the estimation of the time where V_{2} is a maximum produces a large error in $V_{12^{\checkmark}}$	2
1	(b)(iii)	tick next to No current is flowing (only); accept other clear means of identifying this response	1
1	(b)(iv)	(since $\frac{V_{2}}{V_{1}}=\frac{R_{2}}{R_{1}}$) current in R1 = current in R2 \downarrow current flowing in to terminal $Y=$ current flowing out of terminal Y (hence no current can flow to C2 from Y or in to Y from C2) 2^{\checkmark} $\left[\right.$ from $\left(Q=C \times V ; \frac{d Q}{d t}=C \times \frac{d V}{d t} ; \therefore\right) I=C \times \frac{d V}{d t} 1^{\checkmark}$ when $\left.\frac{d V}{d t}=0, I=0{ }_{2} \sqrt{ }\right]$ [current reverses after the moment that V_{2} is a maximum or before (V_{2} is a maximum) the current is towards C 2 [away from $\mathrm{Y} / \mathrm{C} 2$ charges up] and after (V_{2} is a maximum) the current is away from C 2 [towards Y / current reverses / C2 discharges] ${ }_{12} \checkmark=1$ MAX]	2

1	(c)	curve of decreasing negative gradient (allow straight line of negative gradient) starting at $(0,3.95 \pm 0.05)_{1} \checkmark$ ending at $(60,2.70 \pm 0.05)_{2} \checkmark$	$\mathbf{2}$

	(a)	systematic error in y would produce a (non-zero) intercept [graph is transformed / line shifted / points shifted by the same amount] \checkmark	1
	(b)(i)	either $\mathrm{kg} \mathrm{s}^{-2}$ or Nm^{-1} or $\mathrm{Jm}^{-2} \checkmark$	1
2	(b)(ii)	gradient is increased [steeper] or 0/2 ${ }_{1} \checkmark$ (for same x,) y values are proportionally bigger [bigger by same fraction], or (for same y,) x values are proportionally smaller [smaller by same fraction, or because $\frac{2 s \gamma}{g t \rho}$ is the gradient $]_{2} \checkmark$	2
	(c)	plot $\left(h+\frac{r}{3}\right)$ against $\frac{1}{r}$ or vice-versa; the suggested plot must be linear ${ }_{1} \checkmark$ [other variations are possible] valid method of obtaining γ using the gradient of the graph, eg for $\left(h+\frac{r}{3}\right)$ on vertical axis against $\frac{1}{r}$, gradient $=\frac{2 \gamma}{g \rho}\left(\text { hence } \gamma=\text { gradient } \times \frac{g \rho}{2}\right)_{2} \checkmark$	2
	(d)(i)	$\begin{aligned} & I_{1}\left(=R_{2}-R_{1}=11.51-2.92\right)=8.59 \mathrm{~cm} \text { and } I_{2}\left(=R_{4}-R_{3}=9.07-3.85\right)=5.22 \\ & \left.\mathrm{~cm}\left[I_{1}-I_{2}=3.37 \mathrm{~cm}\right]{ }_{1} \checkmark \text { (reject truncation to } 2 \mathrm{sf} 8.6 \text { and } 5.2\right) \\ & \text { method: } r=\sqrt{\frac{m}{\rho \pi\left(l_{1}-l_{2}\right)}}\left[r^{2}=\frac{m}{\rho \pi\left(l_{1}-l_{2}\right)}\right] 2^{\checkmark} \\ & r=1.36 \times 10^{-3} \mathrm{~m}\left[1.359 \times 10^{-3} \mathrm{~m} \text { to } 4 \mathrm{sf}\right]{ }_{3} \checkmark \\ & \text { (ecf for wrong }{ }_{1} \checkmark \text { but no credit for POT errors; reject } 2 \mathrm{sf} 1.4 \times 10^{-3} \mathrm{~m} \text { unless } \\ & \text { data has been truncated to lose }{ }_{1} \checkmark \text {) } \end{aligned}$	3
	(d)(ii)	uncertainty in $\left(I_{1}-I_{2}\right)= \pm 0.20 \mathrm{~cm}_{1} \checkmark$ percentage uncertainty in $\left(I_{1}-I_{2}\right)=\left[\frac{0.20}{3.37} \times 100\right](=5.9(3) \% \text { or } 6 \%)_{2} \checkmark$ (ecf if uncertainty in $\left(I_{1}-I_{2}\right)= \pm 0.10 \mathrm{~cm}$) percentage uncertainty in $r\left(=0.5 \times\right.$ percentage uncertainty in $\left.\left(I_{1}-I_{2}\right)\right)$ $=2.9(7) \%$ [accept $2 \mathrm{sf} 3.0 \%$ or 1sf $3 \%]_{3} \downarrow$ (ecf for wrong ${ }_{2} \downarrow$; reject 2.9%)	3
			24

