A-LEVEL
 Physics

PHA5/2D - Turning Points in Physics
Mark scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

[^0]| Question | Answers | Additional Comments/Guidance | Mark | $\begin{gathered} \text { ID } \\ \text { details } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1(a)(i) | There is a (constant) force acting which is (always) at right angles/perpendicular to the path/motion/velocity/direction of travel/to the beam
 Or mentions a centripetal force \checkmark
 Force is at right angles to the magnetic field and the electron motion
 Or
 direction given by left hand rule \checkmark | First mark is for condition for circular motion Not speed
 Second mark is for a statement relating to the origin of the force
 Any mention of attraction to the plates is talk out (TO) | 2 | |
| 1(a)(ii) | States $B e v=\frac{m v^{2}}{r}$ and evidence of correct intermediate stage showing manipulation of the formula
 or
 Quotes $r=\frac{m v}{B e}$ from formula sheet and change of subject to $v=B e r / m$ seen | Accept delete marks or rewrite as $B e=\frac{m v}{r}$ or rearrangement as $\frac{v^{2}}{v}=\frac{B e r}{m}$ | 1 | |
| 1(a)(iii) | States $B e v=\frac{e V}{d}$ or $F=\operatorname{Bev} F=\frac{e V}{d}$ (or $F=E e$ and $E=\frac{V}{d}$ in any form) and $\text { states } v=\frac{V}{B d}$ | Allow use of e or Q
 No mark for just quoting final equation. There must be evidence of useful starting equations | 1 | |

1(b) \quad Equates the formulae for v and shows $\frac{e}{m}$ equated to $\frac{V}{B^{2} r d}$

Must include 'e/m = 'not just 'specific charge ='	1	
Note there is no ecf. Candidates who use an		
incorrect equation in 1a(iii) will lose this mark		
unless they restart from first principles. Condone Q/m		

- argument is well structured with minimum repetition or irrelevant points
 - accurate and clear expression of ideas with only minor errors in the use of technical
 terms, spelling and punctuation and grammar

A
Measure the terminal speed of the falling droplet
At the terminal speed weight = viscous force (+ upthrust)
$m g=6 \pi \eta r v$ and $m=4 \pi r^{3} \rho / 3$ so $r^{2}=\frac{9 \eta v}{2 \rho g}$
r could be determined as density of drop, viscosity of air and
g are known(r is the only unknown)

B
m can be determined if r is known
Apply pd between the plates so electric field $=V / d$ and adjust until droplet is stationary
$Q V / d=m g$ so Q can be found
C
Make a number of measurements to find Q
Results for Q are in multiples of $1.6 \times 10^{-19} \mathrm{C}$ so Q can be found
e.g.

1-2
Superficial with some sensible comments about the procedure with significant errors in attempts at use of equations. May do one part of $A B$ or C reasonably well. Relevant Equations without little explanation may be worth 1.

3-4

Should cover most of the point in two of A, B \& C coherently
$A \& B$ may be well done in an answer that is easy to follow
or B and C may be well explained but there may be significant errors or omissions in the determination of r.
or a bit of all A B and C with significant errors or omissions

5-6

Will cover the points made in A B \& C with few omissions in an answer that is easy to follow. The candidate will define some terms used in

Question	Answers	Additional Comments/Guidance	Mark	ID details
2(a)(i)	Appreciation that one component changes speed while the other component at right angles does not \checkmark When entering a denser medium a corpuscle /light accelerates or its velocity/momentum increases perpendicular to the interface There is a (short range) attractive force between light corpuscle and the (denser) material \checkmark	Not allowed: Attraction due to opposite charges Force making them move faster is not enough Accelerate in medium Not gains energy	3	
2(a)(ii)	Light (was shown by experiment to) travel slower in (optically)denser medium OWTTE \checkmark Newton's theory required light to travel faster, wave theory suggested slower speed \checkmark or Newton's theory could not explain the slower speed or Huygens theory could explain the slower speed	Condone 'waves..' instead of 'light' OWTTE e.g. speed in vacuum higher than speed in other medium Not allowed: Reference to Young's two slit- question asks them about refraction.	2	
2(a)(iii)	A corpuscular theory predicts only two (bright) lines/high intensity patches of light whereas a wave theory predicts many fringes \checkmark Corpuscles can only travel in straight lines or waves can produce fringes because (diffract and) interfere/superpose/ arrive in and out of phase/have different path differences	Need to describe the patterns ie not just interference fringes are seen for the first mark	2	

Question	Answers	Additional Comments/Guidance	Mark	$\begin{gathered} \text { ID } \\ \text { details } \end{gathered}$
3(a)	They expected the time taken for the light to travel in one direction to be different from the other \checkmark or Expected light to travel at different speeds in the two directions There would be a phase shift /change in the phase relationship	However expressed e.g. in terms of the different times taken parallel and at right angles to the Earth's motion(through the Aether) Not longer/different paths or path difference	2	

3(b)(i)	speed through aether $=\quad \frac{\text { circumference of Earth orbit around the Sun }}{\text { time for one orbit (1 year) }}$ or $v=(G M / r)^{1 / 2}$ with M and r defined	Need to be clear about the distance and time.	1
3(b)(ii)	11 m	Watch out for confusion between Earth's orbit around the Sun and Earth's rotation on its axis	

3(c)	Experiment showed speed of light from moving object is same as that from stationary object or Speed of light in direction of motion is same as in perpendicular direction or speed of light does not depend on speed of source or observer Speed of light being invariant or Aether theory incorrect/no aether/no absolute motion It was a postulate/assumption of the theory of special relativity Or this supports the theory \checkmark	Allow is always $3 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$ in air or vacuum instead of invariant Second mark is for explicitly linking the observation to Einstein's theory	2	
Total			6	

Question	Answers	Additional Comments/Guidance	Mark	ID details
4(a)(i)	Distance travelled in muons' frame of reference $=10700\left(1-0.996^{2}\right)^{1 / 2}=956 \mathrm{mv}$ Time taken in muons' frame of reference $=3.2 \mu \mathrm{~s} \checkmark$ This is 2 half-lives so number reaching Earth $=250 \checkmark$ OR Time in Earth frame of reference $=10700 /\left(0.996 \times 3 \times 10^{8}\right)=3.581 \times 10^{-5} \mathrm{~s} \checkmark$ Time taken in muons' frame of reference $=3.2 \mu \mathrm{~s} \checkmark$ This is 2 half-lives so number reaching Earth $=250 \checkmark$ OR Half-life in Earth frame of reference $=1.6 \times 10^{-6} /\left(1-0.996^{2}\right)^{1 / 2}=17.9 \times 10^{-6} \mathrm{~s}$ Time taken $=35.8 \times 10^{-6} \mathrm{~s} \checkmark$ This is 2 half lives so number reaching Earth $=250 \checkmark$ OR Distance travelled in muons' frame of reference $=10700\left(1-0.996^{2}\right)^{1 / 2}=956 \mathrm{~m}$ Distance the muon travels in one half-life in muons reference frame $=0.996 \times 3 \times 10^{8} \times 1.6 \times 10^{-6}=478 \mathrm{~m}$ Therefore 2 half-lives elapse to travel 956 m so number $=250 \checkmark$ OR decay constant in muon frame of reference or decay constant in the Earth frame of reference \checkmark Uses the corresponding elapsed time and decay constant in $N=N_{o} e^{-\lambda t} \downarrow$ Arrives at $250 \checkmark$	All steps in the working must be seen Award marks according to which route they appear to be taking. The number left must be deduced from the correct time that has elapsed in the frame of reference they are using.	3	

4(a)(ii)	For an observer in a laboratory on Earth the distance travelled by a muon is greater than the distance travelled by the muon in its frame of reference For an observer in a laboratory on Earth time passes more slowly than for a muon in its frame of reference For an observer in a laboratory on Earth, the probability of a muon decaying each second in lower than it is for a muon in its frame of reference	\checkmark if correct \square		1	
4(b)(i)	Total energy $=9.11 \times 10^{-31} \times\left(3 \times 10^{8}\right)^{2} /\left(1-0.98^{2}\right)^{1 / 2} \checkmark$ $4.12 \times 10^{-13} \mathrm{~J}$ seen to 2 or more $\mathrm{sf} \checkmark$		Show that so working must be seen	2	
4(b)(ii)	$\begin{aligned} & \text { Change }=7.5 \times 10^{-14} \mathrm{~J} \\ & V=469(470) \mathrm{kV} \text { allow ecf using their answer to }(\mathrm{b})(\mathrm{i}) \end{aligned}$		ecf is their $\left.((\mathrm{b})(\mathrm{i})-3.37) \times 10^{-13}\right) / 1.6 \times 10^{-19}$ Using 4×10^{-13} gives 394 (390)kV Using 3.9×10^{-13} gives 331 (330) kV Do not allow 1 sf answer	1	
Total				7	

[^0]: Copyright © 2015 AQA and its licensors. All rights reserved.
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

