AQA

A-LEVEL
 PHYSICS A

PHA5C - Applied Physics
Mark scheme

2450
June 2014

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

[^0]| Question | Answers | Additional Comments/Guidance | Mark | ID details |
| :---: | :---: | :---: | :---: | :---: |
| 1 a | $\begin{aligned} & \frac{3.5}{(2 \pi \times 0.088)}=6.3 \mathrm{rev} \\ & 6.3 \times 2 \pi=39.8 \mathrm{rad} \text { or } 40 \mathrm{rad} \\ & \mathrm{OR} \\ & \frac{3.5}{0.088}=39.8 \text { or } 40 \mathrm{rad} \quad \mathrm{~J} \end{aligned}$ | If correct working shown with answer 40 rad give the mark Accept alternative route using equations of motion. | 1 | |
| 1 b | $\omega=v / r=2.2 / 0.088=25 \mathrm{rad} \mathrm{s}^{-1} \mathrm{~J}$ | | 1 | |
| 1 ci | $\begin{aligned} E & =1 / 2 l \omega^{2}+1 / 2 m v^{2}+m g h \\ & =\left(0.5 \times 7.4 \times 25^{2}\right) \\ + & \left(0.5 \times 85 \times 2.2^{2}\right) \\ + & (85 \times 9.81 \times 3.5) \\ & =2310 \mathrm{~J} \\ + & 206 \quad \mathrm{~J} \\ + & 2920 \quad \mathrm{~J} \\ & (=5440 \mathrm{~J} \text { or } 5400 \mathrm{~J}) \end{aligned}$ | CE from 1 b $\begin{aligned} & 1 / 2 I \omega^{2}+1 / 2 m v^{2}=2310+210=2520 \mathrm{~J} \\ & 1 / 2 I \omega^{2}+m g h=2310+2920=5230 \mathrm{~J} \\ & 1 / 2 m v^{2}+m g h=210+2920=3130 \mathrm{~J} \end{aligned}$
 Each of these is worth 2 marks | 3 | |
| 1 c ii | Work done against friction $=T \theta$ $\begin{aligned} & =5.2 \times 40=210 \mathrm{~J} \\ & \text { Total work done }=W=5400+210 \\ & =5600 \mathrm{~J} \quad \checkmark \quad 2 \mathrm{sig} \text { fig } \end{aligned}$ | CE if used their answer to 1 c i rather than 5400J
 Accept 5700 J (using 5440 J)
 Sig fig mark is an independent mark | 3 | |

1 d	$\begin{aligned} & \text { Time of travel }=\text { distance /average speed }= \\ & 3.5 / 1.1=3.2 \mathrm{~s} \quad J \\ & P_{\text {ave }}=\underline{5600}=1750 \mathrm{~W} \\ & 3.2 \\ & P_{\max }=P_{\text {ave }} \times 2=3500 \mathrm{~W} \end{aligned}$ OR accelerating torque $=T=W / \theta$ $\begin{aligned} & =5600 / 40=140 \mathrm{~N} \mathrm{~m} \quad \mathrm{~J} \\ & \mathrm{P}=T \omega_{\max }=140 \times 25=3500 \mathrm{~W} \mathrm{~J} \end{aligned}$	CE from 1c ii 1780 W if 5650 J used	2	

question	answers	extra information	mark
2			6
Marks awarded for this answer will be determined by the Quality of Written Communication (QWC) as well as the standard of the scientific response. Examiners should also refer to the information on page 4 and apply a 'best-fit' approach to the marking.			
0 marks	Level 1 (1-2 marks)	Level 2 (3-4 marks)	Level 3 (5-6 marks)
The information conveyed by the answer is sketchy, and neither relevant or coherent. The candidate shows inadequate understanding of the concept of moment of inertia. Formulae may be quoted from the Formulae booklet, but the candidate is unable to apply their meaning to the question.	The information conveyed by the answer is poorly organised and may not be relevant or coherent. There is little correct use of specialist vocabulary. The candidate shows little understanding of how M of I affects acceleration, probably confusing energy, momentum or torque, or treating this part of the question cursorily. They will probably relate M of I to mass and radius, but not cover the aspects of mass, and distribution of mass around the axis, and may not relate their answers well to the context of the question. There will be consideration of any 2 or 3 of the answer points below	The information conveyed in the answer may be less well organized and not fully coherent. There is less use of specialist vocabulary or specialist vocabulary may be used or spelled incorrectly. The form and style of writing is less appropriate. Some attempt may be made to link energy, torque or momentum to acceleration, but understanding will be limited. They will link M of I to mass and radius ${ }^{2}$ but may not cover all aspects of mass, and distribution of mass around the axis. They are likely to be able to suggest means of reducing M of I. At least any 4 of the answer points below are covered,	The information conveyed by the answer is clearly organized, logical and coherent, using appropriate specialist vocabulary correctly. The form and style of writing is appropriate to answer the question. The candidate can explain the need for a low M of I for high acceleration by arguing coherently in terms of energy or torque or momentum, or a combination of these. They will relate their answer to cycles, and possibly specific sports. The candidate will show how $I=m r^{2}$ influences wheel design for low inertia, covering mass, and distribution of mass around the axis. They may also discuss optimizing low inertia with wheel strength or other design constraints. The answer includes at least one of the first 3 answer points below and any 5 others.

Question	Answers	Additional Comments/Guidance		Mark	ID details
4 a	The ratio \qquad work input OR COP $=Q_{\text {IN }} / W$ with $Q_{\text {IN }}$ and W explained/defined \checkmark		It must be clear that $Q_{\text {IN }}$ is energy delivered to the area to be heated/hot space. Do not accept 'heat input' or any wording that is vague.	1	
4 bi	$\begin{aligned} & \eta_{\max }=\frac{1600-290}{1600}=0.82 / 82 \% \\ & \text { input power }=\underline{\text { output power }}=\underline{80}=98 \mathrm{~kW} \\ & \text { efficiency } \\ & \text { fuel flow rate } \times \mathrm{CV}=98 \mathrm{~kW} \\ & \text { fuel flow rate }=98000 /\left(49 \times 10^{6}\right)=2.0 \times 10^{-3} \\ & \mathrm{~kg} \mathrm{~s}^{-1} \mathrm{~J} \\ & \text { OR } 7.2 \quad \mathrm{~J} \quad \mathrm{~kg} \mathrm{~h}^{-1} \quad \end{aligned}$		If first 2 steps in calculation are not seen and 80 kW used for input power give 1 mark for: fuel flow rate $=80000 /\left(49 \times 10^{6}\right)$ $=1.6 \times 10^{-3} \mathrm{~J}$ The unit mark is an independent mark.	4	
4 b ii	$\begin{aligned} & C O P_{\mathrm{HP}}=\frac{Q_{2}}{W} \\ & \text { So } Q_{2}=16 \times 2.6=41.6 \text { or } 42 \mathrm{~kW} \\ & Q_{1}=98-80=18 \mathrm{~kW} \\ & \text { Total } Q_{1}+Q_{2}=60 \mathrm{~kW} \end{aligned}$		CE for Q_{1} if incorrect input power from b i is used, but NOT $80-16$ or 80-80	3	
4 b iii	Heat pump delivers more heat energy than the electrical energy input. J			2	

	Reason: it adds energy from external source to electrical energy input. J	Accept QiN $=W+$ Qout if explained correctly e.g. by diagram.		

[^0]: Copyright © 2014 AQA and its licensors. All rights reserved.
 AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

