
 

 

 

 

 

OCR A Physics A-level 
Topic 6.1: Capacitors 

(Content in italics is not mentioned specifically in the course 
specification but is nevertheless topical, relevant and possibly 

examinable) 
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Definition of a Capacitor and Capacitance 

A capacitor is an electrical component that stores charge on two separated metallic 
plates. An insulator, sometimes called a dielectric, is placed between the plates to 
prevent the charge from travelling across the gap. 

The capacitance, 𝐶𝐶, is defined as the charge stored, 𝑄𝑄, per unit potential difference, 𝑉𝑉, 
across the two plates. Therefore we can write 

𝐶𝐶 =  
𝑄𝑄
𝑉𝑉

 

where capacitance is measured in Farads, F (CV-1).  

When a capacitor is connected to a DC power supply, e.g. a cell or battery, there is a brief 
current as the power supply draws electrons from one plate and deposits them on the 
other plate. This leaves the first plate with charge +𝑄𝑄 and the second with charge –𝑄𝑄. 
These charges will be equal and opposite due to the conservation of charge. Current will 
flow in the circuit until the potential difference between the plates is equal to that of the 
electromotive force or e.m.f. of the power supply.  

Dielectric Insulators 

The dielectric has another purpose: to increase the capacitance of the device by 
polarizing in the electric field and effectively increasing the charge stored on the plates. 
Dielectrics have an associated electrical permittivity (see 6.2 Electric Fields) which 
describes its ability to polarize and strengthen the charge storage capability of the 
device. This is why in reality the insulator is rarely a vacuum or just air as these 
materials do not polarize well (or at all in the case of the vacuum) and so are poor 
dielectrics.  
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Capacitors in Series  

Kirchhoff’s voltage law states that the sum of the e.m.f.s in any closed loop in a circuit is 
equal to the sum of the potential differences in the same loop (see section 4.3). 

𝑉𝑉 = 𝑉𝑉1 + 𝑉𝑉2 + 𝑉𝑉3 + ⋯+ 𝑉𝑉𝑁𝑁 

From the equation 𝐶𝐶 =  𝑄𝑄
𝑉𝑉

, it is clear that 𝑉𝑉 =  𝑄𝑄
𝐶𝐶

 and so substituting this into the 
expression for Kirchhoff’s voltage law gives 

𝑄𝑄
𝐶𝐶𝑇𝑇

=
𝑄𝑄
𝐶𝐶1

+
𝑄𝑄
𝐶𝐶2

+
𝑄𝑄
𝐶𝐶3

+ ⋯+
𝑄𝑄
𝐶𝐶𝑁𝑁

 

where 𝐶𝐶𝑇𝑇 is the combined capacitance of all the series capacitors. As 𝑄𝑄 is a constant it 
can be factorised out to give 

1
𝐶𝐶𝑇𝑇

=
1
𝐶𝐶1

+
1
𝐶𝐶2

+
1
𝐶𝐶3

+ ⋯+
1
𝐶𝐶𝑁𝑁

 

Therefore  

𝐶𝐶𝑇𝑇 = �
1
𝐶𝐶1

+
1
𝐶𝐶2

+
1
𝐶𝐶3

+ ⋯+
1
𝐶𝐶𝑁𝑁
�
−1

 

Note that this equation is similar to the equation for the total resistance of a number of 
resistors in parallel. 

  

Capacitors in Parallel 

Kirchhoff’s current law states that the total current flowing into a node in a circuit must 
be equal to the total current flowing out of that node. Therefore, we can state that 

𝐼𝐼𝑇𝑇 = 𝐼𝐼1 + 𝐼𝐼2 + 𝐼𝐼3 + ⋯+ 𝐼𝐼𝑁𝑁 

Charge can be stated as 𝑄𝑄 = 𝐼𝐼𝐼𝐼, so using the above and factorising out the constant time,  

𝑄𝑄𝑇𝑇 = 𝑄𝑄1 + 𝑄𝑄2 + 𝑄𝑄3 + ⋯+ 𝑄𝑄𝑁𝑁 
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Finally, substituting the equation 𝐶𝐶 =  𝑄𝑄
𝑉𝑉

  and that the voltage is the same over each 
component in parallel we can write   

𝐶𝐶𝑇𝑇 = 𝐶𝐶1 + 𝐶𝐶2 + 𝐶𝐶3 + ⋯+ 𝐶𝐶𝑁𝑁 

Note that this equation is similar to the equation for the total resistance of a number of 
resistors in series. 

  

Energy Stored in a Capacitor 

Work must be done by the power supply to deposit negatively charged electrons onto 
the negative plate as like charges repel according to Coulomb’s law (see 6.2 Electric 
Fields). Equally, work is done to remove electrons from the positive plate as negative 
charges are attracted to positive regions.  

The graph below shows the charge stored on a capacitor plates against the potential 
difference over the device. As voltage is defined as the electrical potential energy per unit 
charge (see 6.2 Electric Fields), the area under the graph must therefore represent the 
work done in charging up the capacitor and so the energy stored in the capacitor. 
Therefore       

𝑊𝑊 = 1
2
𝑄𝑄𝑉𝑉   

however, 𝑄𝑄 =  𝐶𝐶𝑉𝑉 and also  𝑉𝑉 =  𝑄𝑄
𝐶𝐶

  thus 

 𝑊𝑊 = 1
2
𝑉𝑉2𝐶𝐶 𝑊𝑊 = 𝑄𝑄2

2𝐶𝐶
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Applications of Capacitors 

Capacitors are used to store and discharge large quantities of energy in a short time 
period. This makes them useful for short pulses of energy such as camera flashes and 
touch screens where a short finger press leads to a large buildup of energy in a 
capacitor. 

They are also integral to uninterrupted power supplies or UPSs which are used as 
backup power supplies when the mains electricity supply fails. UPSs are commonly 
found in data centers to protect the hardware and in hospitals to maintain a constant 
power supply to life support machines. 

Finally, capacitors are used in the process of converting alternating current (AC) into 
direct current (DC). Once a sinusoidal AC signal has passed through a full wave rectifier, 
the current flows in one direction but varies as shown. The current can then be passed 
through a smoothing circuit in which a capacitor stores energy as the p.d. rises and 
discharges as it falls. 

This can be used maintain a more constant current.  The signal can then be passed 
through another smoothing circuit and another until the voltage is effectively constant. 

 

Charging and Discharging Capacitors  

Once a capacitor has been charged, it can then be discharged by disconnecting the power 
supply and connecting up another electrical component. This can be achieved by flipping 
the switch from in the circuit diagram so from A to B.  Often, this component is a resistor 
as then the resistance, and so the time constant for the fall in voltage, can be known to a 
high degree of accuracy.  

When the power supply is disconnected, the electrons packed onto the negative plate are 
no longer subject to the e.m.f. which held them in such close proximity. They repel one 
another and so flow round circuit dissipating electric energy as heat in the resistor. Once, 
the charges on the negative and positive plates have equilibrated, there is no longer any 
potential difference across the capacitor (𝑄𝑄 = 0) and the electrons cease to flow 
resulting in the current dropping to zero.  

Naturally, this discharging process takes time. The time constant over which this 
discharging process occurs depends firstly on the capacitance and also on the 
magnitude of the resistance in the discharging circuit. The lower the resistance in the 
discharging circuit, the higher the current can be as current is indirectly proportional to 
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the resistance from Ohm’s law (𝐼𝐼 ∝ 1
𝑅𝑅

).  If the current is higher, then the charge on the 
plates will fall to zero in a faster time as ∆𝑄𝑄 = 𝐼𝐼𝐼𝐼. Equally, the larger the capacitance the 
larger the charge stored per unit potential difference. As potential difference is 
proportional to the current by Ohm’s law, then capacitance is a measure of the charge 
stored per rate that charge flows from the plates that is to say 

𝐶𝐶 =
𝑄𝑄
𝑉𝑉
∝
𝑄𝑄
𝐼𝐼

~𝜏𝜏 

where 𝜏𝜏 is the time period over which the capacitor discharges and the symbol ~ here 
means ‘goes as’ so not necessarily directly proportional but as one quantity increases so 
does the other. We use this symbol as the current is not constant over the time spent 
discharging so the relation is not as simple as 𝑄𝑄 = 𝐼𝐼𝜏𝜏. Simply put, this means that the 
amount of charge that can flow before the voltage drops to zero is higher and so a longer 
time is needed for the discharge to take place. 

Before the resistor is connected, the potential difference, 𝑉𝑉0, across the plates is at its 
maximum and given by 𝑉𝑉0 = 𝑄𝑄0

𝐶𝐶
 where 𝑄𝑄0 is the initial charge stored on the plates. At 

time 𝐼𝐼 = 0, the resistor circuit is connected and the current flowing through the circuit 
will be 𝑉𝑉0/𝑅𝑅 as given by Ohm’s law. As the electrons flow, the charge stored will 
decrease as the negative plate loses electrons and the positive plate gains electrons. This 
in turn will decrease the potential difference over the capacitor and so current must also 
decrease and will eventually reach zero.  

 
Derivation of the relationship between Charge and Time in a Discharging Capacitor 

Current can be defined as the differential of charge with respect to time 

𝐼𝐼 = −
𝑑𝑑𝑄𝑄
𝑑𝑑𝐼𝐼

 

where the negative sign is a result of conventional current being in the opposite 
direction to electron flow. Though as  𝑉𝑉 = 𝐼𝐼𝑅𝑅 and  𝑄𝑄 = 𝐶𝐶𝑉𝑉, 
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𝑑𝑑𝑄𝑄
𝑑𝑑𝐼𝐼

= −
𝑄𝑄
𝐶𝐶𝑅𝑅

 

Separating variables and integrating from 𝐼𝐼 = 0 when 𝑄𝑄(𝐼𝐼 = 0) = 𝑄𝑄0 gives  

�
𝑑𝑑𝑄𝑄
𝑄𝑄

𝑄𝑄

𝑄𝑄0
=  −�

𝑑𝑑𝐼𝐼
𝐶𝐶𝑅𝑅

𝑡𝑡

0
 

ln �
𝑄𝑄
𝑄𝑄0
� =  −

𝐼𝐼
𝐶𝐶𝑅𝑅

 

Therefore, taking the exponent 

𝑄𝑄 = 𝑄𝑄0𝑒𝑒
− 𝑡𝑡
𝐶𝐶𝑅𝑅 

Similar equations can be written for voltage and current as they are related to the 
charge by 𝐼𝐼 = 𝑑𝑑𝑄𝑄

𝑑𝑑𝑡𝑡
 and  𝑉𝑉 = 𝐼𝐼𝑅𝑅. 

𝑉𝑉 = 𝑉𝑉0𝑒𝑒
− 𝑡𝑡
𝐶𝐶𝐶𝐶  𝐼𝐼 = 𝐼𝐼0𝑒𝑒

− 𝑡𝑡
𝐶𝐶𝐶𝐶  

The relationship between 𝑉𝑉, 𝐼𝐼 or 𝑄𝑄 and 𝐼𝐼 is an exponential decay as seen in the graph on 
the right below. 

While charging a capacitor, at any time in the circuit e.m.f. (𝑉𝑉0) will be equal to the sum 
of the p.d.s across the resistor (𝑉𝑉𝑅𝑅) and the capacitor (𝑉𝑉𝐶𝐶) by Kirchhoff’s voltage law. 

𝑉𝑉0 =  𝑉𝑉𝑅𝑅 +  𝑉𝑉𝐶𝐶   

by substituting in 𝑉𝑉𝑅𝑅   =  𝐼𝐼𝑅𝑅, and 𝐼𝐼 = 𝐼𝐼0𝑒𝑒
− 𝑡𝑡
𝐶𝐶𝐶𝐶  

𝑉𝑉𝐶𝐶 =  𝑉𝑉0 −  𝐼𝐼0𝑅𝑅𝑒𝑒
− 𝑡𝑡
𝐶𝐶𝑅𝑅 

or  

𝑉𝑉𝐶𝐶 =  𝑉𝑉0 (1 −  𝑒𝑒−
𝑡𝑡
𝐶𝐶𝑅𝑅) 

A similar expression can be written for the charge on the capacitor. This relationship is 
shown in the graph on the left below.  
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The value of the time constant of the circuit is seen in the exponents of the equations 
above and is often give the symbol 𝜏𝜏 = 𝐶𝐶𝑅𝑅. For a discharging capacitor, when 𝐼𝐼 = 𝜏𝜏 the 
charge on the capacitor will have decreased to approximately 37% of its original value.  

Graphing Variables in Capacitor-Resistor Circuits 

The change in charge with time can be graphed iteratively for a capacitor-resistor 
circuit. First, the time constant is calculated from the known values of the capacitance 
and the resistance.  Then, using the equation  

∆𝑄𝑄
∆𝐼𝐼

= −
𝑄𝑄
𝐶𝐶𝑅𝑅

  

it can be seen that, in a small time interval ∆𝐼𝐼 compared with 𝜏𝜏, the change in charge 
stored, ∆Q, can be calculated. From this a new charge stored can be calculated at the 
new time.           
  𝐼𝐼𝑖𝑖+1 = 𝐼𝐼𝑖𝑖 + ∆𝐼𝐼  ∆𝑄𝑄𝑖𝑖+1 = − 𝑄𝑄𝑖𝑖

𝐶𝐶𝑅𝑅
∆𝐼𝐼  𝑄𝑄(𝐼𝐼𝑖𝑖+1) = 𝑄𝑄(𝐼𝐼𝑖𝑖) + ∆𝑄𝑄𝑖𝑖  

This can be repeated for each new charge to give a value for the charge at each moment 
in time. These could be graphed to give the approximate behaviour of the charge stored 
with time. 

These exponential graphs also show that if 𝑉𝑉, 𝐼𝐼 or 𝑄𝑄 are measured at set time intervals 
that 

 𝑉𝑉1
𝑉𝑉0

 = 𝑉𝑉2
𝑉𝑉1

 = 𝑉𝑉3
𝑉𝑉2

…  

or more generally 

𝑉𝑉𝑖𝑖+1
𝑉𝑉𝑖𝑖

=
𝑉𝑉𝑖𝑖+2
𝑉𝑉𝑖𝑖+1

 

This relationship is always true for exponential decays.  
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Experimental Techniques to investigate Capacitor-Resistor Circuits 

To investigate the charge or discharge of a capacitor a circuit with a DC power supply, a 
capacitor, a resistor in series, an ammeter in series and a voltmeter in parallel are 
needed. Data loggers can be used to collect the data in time as capacitors often discharge 
very quickly. Plotting current and voltage with time in charging and discharging circuits 
can be used to investigate of the exponential relationships between the variables 
current and p.d. with time. The readings for the voltage and current should be taken at 
set intervals which should be small compared to the time constant. This can then allow 
for an experimental determination of the time constant. The experimental value could 
then be compared to the theoretical value based on the values of the resistance and 
capacitance.  

 

Dependence of Capacitance on Dimensions of the Capacitor 

The capacitance of a parallel plate capacitor depends on the number of electrons that 
can be stored on the negative plate and so is directly proportional to the area of the 
plates, 𝑨𝑨. The attraction between charges on the negative plate and the positive plate 
depends on the separation of the plates, 𝑑𝑑. Therefore the capacitance is indirectly 
proportional to 𝒅𝒅 so 

𝐶𝐶 ∝ 𝐴𝐴  𝐶𝐶 ∝ 1
𝑑𝑑

 

With a vacuum between the two plates capacitance is then defined as 

𝐶𝐶 =
𝜀𝜀0𝐴𝐴
𝑑𝑑

 

For non-vacuum insulators this permittivity changes, such that 𝜀𝜀 =  𝜀𝜀𝑟𝑟𝜀𝜀0 where 𝜀𝜀𝑟𝑟 is the 
relative permittivity of the dielectric medium. Hence, for a general parallel plate 
capacitor 

𝐶𝐶 =
𝜀𝜀𝐴𝐴
𝑑𝑑
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