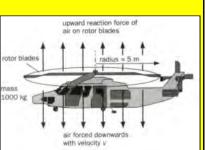

NIT 6484	Module 1	4.1.1	Newton's Laws of Motion	NEWTON'S LAWS OF MOTION		
• Si • De an	d appreciate the vector	as the prod nature of	duct of mass and velocity	These three laws, published by Sir Isaac Newton in 1687 in his Philosophiae Naturalis Principia Mathematica, were developed from very careful observation of the real world. They describe the effects of forces on the motion of bodies and as such, form the basis of the science of KINETICS.		
	s momentum. elect and apply the equation	tion F =	$\frac{\Delta p}{\Delta t}$ to solve problems.	NEWTON'S FIRST LAW (NEWTON I)		
	x plain that F = ma is w when mass (m) remains	•	case of Newton's second	All objects will continue to be STATIONARY (AT REST), or to move with CONSTANT VELOCITY unless they are acted on by a RESULTANT FORCE.		
• De	efine IMPULSE of a for	ce.		POINTS TO NOTE		
	ecall that the area under ual to IMPULSE.	r a FORCE	against TIME graph is	 CONSTANT VELOCITY means that there is no change in the object's SPEED or DIRECTION OF MOTION. ZERO RESULTANT FORCE means that the combined effect of all the forces acting on the object is zero. 		
• Ré	ecall and use the equation IMPULSE = CH		MOMENTUM	• FORCE may then be said to be something which changes or tries to change the state of REST or UNIFORM MOTION of an object, either through CONTACT or ' FIELD' ACTION (i.e. gravity, electric or magnetic fields).		
				FXA © 200		

UNIT 6484	Module 1	4.1.1	Newton's Laws of Motion	
•	A STATIONARY obj move when a RESULT acts on it.			NEWTON'S SECOND LAW (NEWTON II) The RATE OF CHANGE OF MOMENTUM of an object is directly proportional to the applied RESULTANT FORCE and occurs in the DIRECTION OF THE RESULTANT FORCE.
	A MOVING object wi to move at constant s straight line until a Ri FORCE acts on it.	peed in a	AT SCHARBE, AT SCHARBER	
	This opposition to any c which all objects have, is The greater the mass of Inertia.		ERTIA.	LINEAR MOMENTUM = MASS × VELOCITY $p = m \times V$ $(kg m s^{-1}) (kg) (m s^{-1})$
	An astronaut involved 'space-walk' has to be		Momentum is a vector quantity having both magnitude and direction. So if momentum to the right is considered positive , then momentum to the left is negative .	
	tethered to his space In the frictionless en of outer space, the su of pushes would start moving into space and some kind of jet prop unit the astronaut wo unable to change his n	craft. vironment nallest t him l without ulsion uld be		• FORCE is something which can act on an object and so cause its momentum to change. The larger the force the greater is the rate at which the object's momentum changes. The harder the ball is struck, the greater is its rate of change of momentum and the more difficult it is for the keeper to stop.
				FXA @ 200

UNIT	G484
------	------

1


2

3

4. HELICOPTER PROBLEM

Rotating helicopter blades force air downwards and from **NEWTON III** there is an equal and oppositely directed force exerted by the air on the blades. A helicopter can hover in mid-air when this upward force is equal to its weight. The same principle applies to all forms of hovering flight, from the natural wonders of the bumble bee and humming bird to the technological brilliance of the harrier, vertical take-off aircraft.

A hovering helicopter of mass **2000 kg** is shown in the diagram opposite. If the length of each rotor blade is **5 m**, calculate the velocity of the air forced downwards by the rotor in order that the helicopter hovers in mid-air.

density of air = **1.3 kg m**⁻³. Acceleration due to gravity, g = **10 m s**⁻².

From NEWTON II :

upward force of = rate of change of momentum = helicopter weight
air on blades of air forced down by blades
helicopter weight = (mass of air forced × (velocity change of air
down per sec) being forced down)
Helicopter weight = (volume of air forced × (density of air) × (velocity change of air
down per sec) being forced down)
mg =
$$\pi R^2 v \times \rho \times v$$

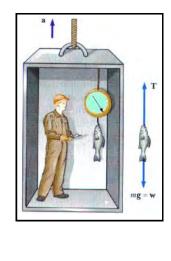
 $v^2 = \frac{mg}{\pi R^2 \rho} = \frac{2000 \times 10}{\pi \times 5^2 \times 1.3} = 195.9$
 $v = \sqrt{195.9} = \frac{14 \text{ m s}^{-1}$

PRACTICE QUESTIONS (1)

A rocket has a total mass of 3.0×10^6 kg of which 1.2×10^5 kg is its initial fuel load at take-off. If its engines can provide a thrust of 3.0×10^7 N, calculate :

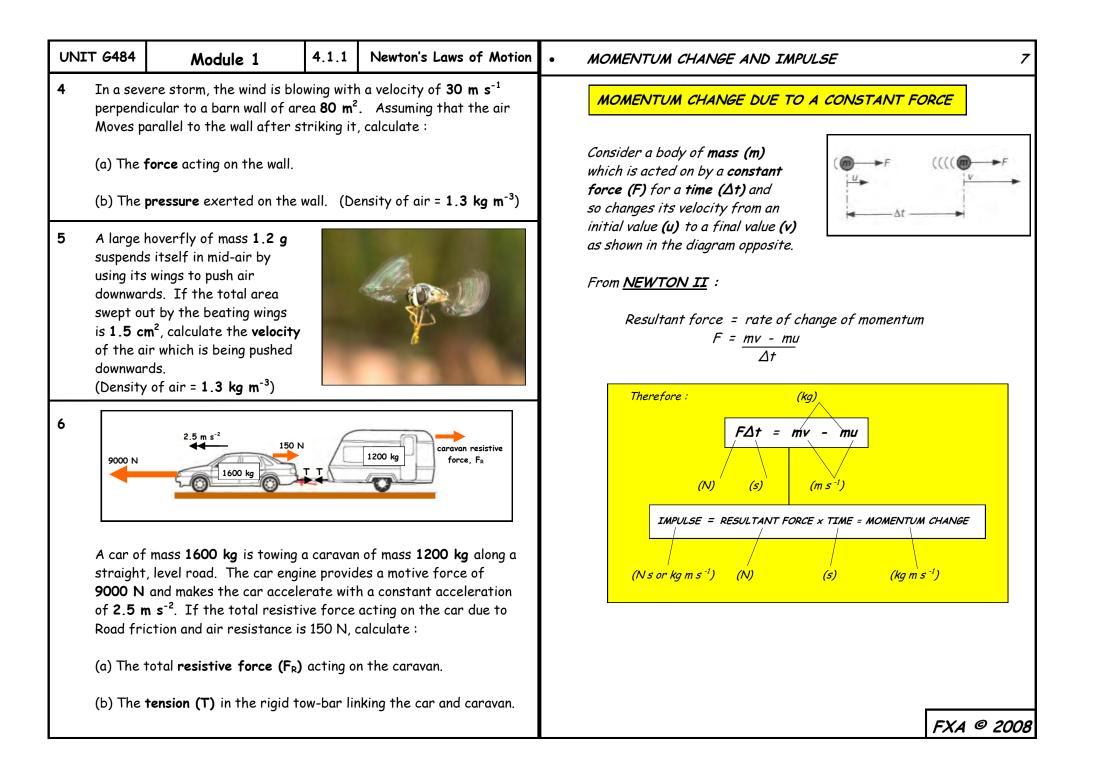
- (a) The initial acceleration at take-off.
- (b) The acceleration when 1.0×10^5 kg of the fuel has been used up.

A submarine of mass 5.0×10^6 kg is moving with a velocity of 8.5 m s^{-1} while fully submerged. The power is suddenly shut off, and the submarine takes 5.5 minutes to come to rest. Calculate :


(a) The average deceleration.

(b) The average decelerating force.

A fisherman is weighing his fish inside the lift of a tall building. If he hooks a sea bass of mass **4.0 kg** onto the spring balance, calculate the indicated weight when the lift is :


(a) Stationary.

- (b) Accelerating upwards at 2.5 m s^{-2} .
- (c) Accelerating downwards at 3.0 m s⁻².
- (d) Moving upwards at a constant velocity of 4.0 m s⁻¹.

6

FXA @ 2008

Newton's Laws of Motion

10

TIME/s

MOMENTUM CHANGE DUE TO A VARYING FORCE

The analysis for momentum change produced by a constant force is also applicable to that due to a varying force because the product <u> $F\Delta t$ </u> can be thought of as being equal to the <u>AREA ENCLOSED</u> by a graph of FORCE against TIME.

FORCE/N

500

n

EXAMPLE

A body is acted upon by a force which varies with time as shown in the FORCE-TIME graph shown opposite.

Use the graph to calculate the impulse given to the body in a time of 10 s.

What is the **momentum** gained by the body ?

Impulse = change of momentum = Area enclosed by the F/t Graph $=\frac{1}{2} \times 10 \times 500$

2500 N s (or kg m s^{-1})

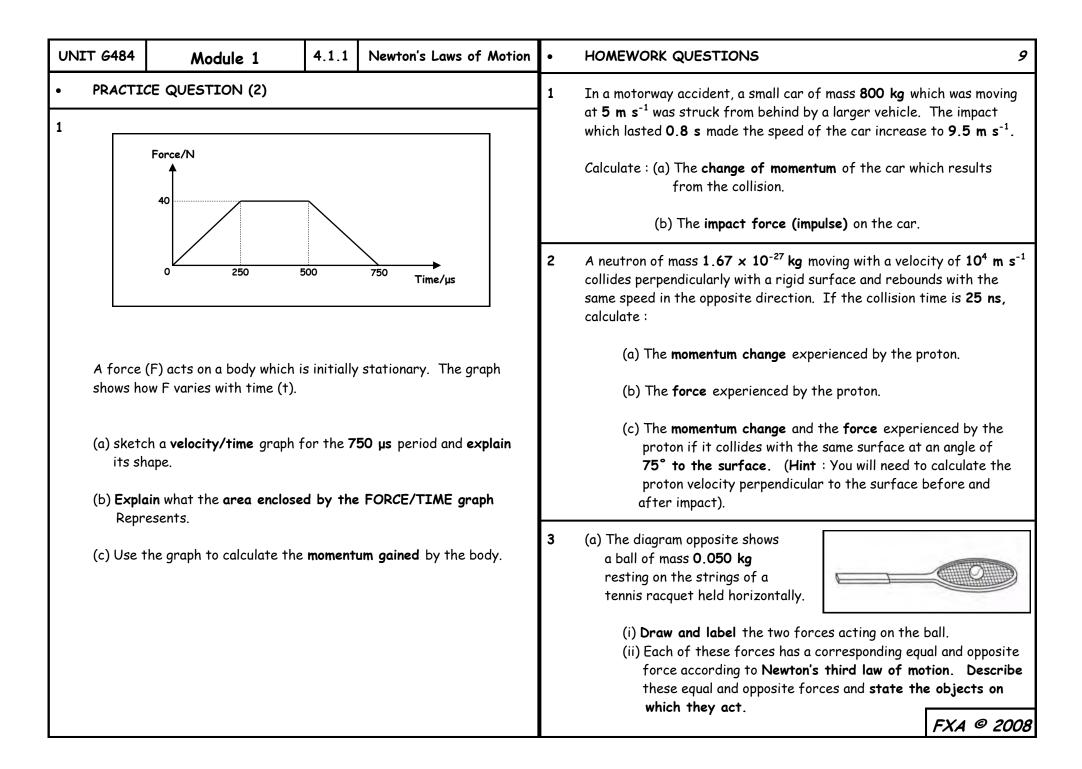
2

IMPLICATIONS OF IMPULSE AND CHANGE OF MOMENTUM

The impulse needed to decelerate a moving object and bring it to rest, or to accelerate a stationary object from rest can be provided either by a small force for a long time or a large force for a short time.

LARGE Δt means SMALL F for a given momentum change

- Cricketers try to slow down a ball gradually when catching it and so exert a small force for a long time. Stopping it too rapidly needs a large force and that hurts!
 - Cars have crumple zones designed to collapse progressively on impact. This increases the time taken for the car to come to rest in a crash, thereby reducing the force exerted on the car and its occupants.



- Airmen whose parachutes have failed to open • have sometimes survived falling thousands of metres by landing in deep snow, on steep hillsides. The time taken for them to come to rest is increased and this means that the force exerted on them is small enough to cause only slight injury.
- In any sport where balls are struck • (golf, tennis, football, etc.), the player trying for maximum speed always tries to follow-through so as to increase the contact time between the club, racquet, foot, etc.

This maximises the impulse given to the ball, producing a greater change in momentum.

FXA @ 2008

UNIT 6484	Module 1	4.1.1	Newton's Laws of Motion		(b) The mass of the ball is 0.50 kg. Use your answers to (a) to 10		
 (iii) Calculate the difference in magnitude between the two forces on the ball when the racquet is accelerated upwards at 2.0 m s⁻². (b) The ball is dropped from rest at a point 0.80 m above the racquet head. The racquet is fixed rigidly. Assume that the ball make an elastic collision with the strings and that any effects of air resistance are negligible. Calculate : (i) The speed of the ball just before impact. (ii) The momentum of the ball just before impact. 					 calculate : (i) The maximum acceleration of the ball. (ii) The final speed of the ball. (iii) The kinetic energy of the ball after the kick. (c) The ball hits a wall with a speed of 14 m s⁻¹. It rebounds from the wall along its initial path with a speed of 8 m s⁻¹. The impact lasts for 0.18 s. Calculate the mean force exerted by the ball on the wall. 		
	(iii) The change in momentum of the ball during the impact. (iv) The average force during the impact for a contact time of 0.050 s . <i>(OCR A2 Physics - Module 2824 - January 2003)</i>				 5 A cricketer throws a cricket ball of mass 0.16 kg. (a) The graph shows how the force 		
a footba	uestion is about kicking ball. e graph shows how the	60 - 50 - F/N 40 -	50 -		on the ball from the cricketer's hand varies with time . The ball starts from rest and is thrown horizontally.		
force varie is bei	c (F) applied to the ball s with time (t) whilst it ing kicked horizontally. ball is initially at rest.	30 - 20 -			 (i) Estimate the area under the graph. (ii) The area under the graph represents a change in a physical 		
(i)	Use the graph to find :	0-0			quantity for the ball. State the name of this quantity.		
	1. The maximum force 2. The time the boot i	••			(iii) Calculate the speed of the ball, mass 0.16 kg , when it is released.		
(ii) The mean force multiplie called the impulse delive estimate the impulse del	red to th	ne ball. Use the graph to		(iv) Calculate the maximum horizontal acceleration of the ball. (Part question - OCR A2 Physics - Module 2824 - January 2006)		
					FXA © 2008		