

UNIT <i>G</i> 482	Module 2	2.2.5 Power	•	PRACTICE QUESTIONS (1) 2
	P = IR, P = IV $P = I$ $(W) (A)$ $P = IV$ $P = IV$	$I = I \times IR$ $I = V/R \times V$	1	 (a) Calculate the rate at which energy is transferred by a 230 V mains supply when it is providing a current of 10.9 A to an electric heater. (b) What power is supplied to an electric heater of resistance 54 Ω when it is connected to a 230 V mains supply. (c) Calculate the resistance of a 60 W filament lamp if it draws a current of 270 mA when it is connected to the mains supply.
	$P = \frac{V}{R}$	(V) 2	2	A large power station supplies electricity to the National Grid at a voltage of 25 kV . What is the power output of the station when the current is 25 kA ?
<u>NOTE</u>	<u>(</u> w)		3	An electric kettle takes 2.0 minutes to boil a quantity of water when it is connected to a 240 V electrical supply. Assuming that all the electrical energy is converted into 2.4 \times 10⁵ J of heat energy, calculate the current taken from the supply.
/	P = IV	$P = I^2 R \qquad P = V^2 / R$	4	A 230 V electrical appliance has a power rating of 1.4 kW . Calculate : (a) The energy transfer in the appliance in 2.5 minutes . (b) The current taken by the appliance.
production of	gives the rate of ALL forms of can be used for	These two equations are only <u>VALID</u> when <u>ALL</u> the electrical energy is transferred to heat energy, so it can only be used for a <u>PURE RESISTOR</u> .	5	An electrical heating element is designed so that it dissipates energy at the rate of 1600 W when it is connected to a 240 V supply. If the element is made of nichrome wire of diameter 0.6 mm and of resistivity 1.1 × 10 ⁻⁶ Ω m , calculate its length .
			6	Calculate the power loss along a 45 cm long connecting lead having a resistance of 4 × 10 ⁻³ Ω m ⁻¹ if it is carrying a current of 375 mA .
				FXA © 2000

UNIT 6482	Module 2	2.2.5	Power	
• FUSES • La w/ in:	Module 2 Arge currents can cause of thich can damage the wirin sulation and, in extreme of A <u>FUSE</u> is an EXCESSIVE a strip which melts as soon arrent exceeds the value of fuse is rated.	verheating ng, produce cases, result E CURRENT metal wire n as the c for which which the	of connecting wires fumes from melting It in electrical fires.	FUSE SELECTION This can best be illustrated by looking at an example. • What is the current rating for the most suitable fuse for use with an electric immersion heater rated at 5 kW, 230 V. Choose from the following fuses : 3 A / 5 A / 13 A / 15 A / 20 A / 25 A / 30 A / 45 A • Calculate the current through the immersion heater. I = $\frac{\rho}{V} = \frac{5000}{230} = 21.74 \text{ A}$ • Choose the fuse with the current rating which is GREATER THAN AND CLOSEST TO the I-value calculated for the heater. The most suitable fuse is therefore :
fr cu • FL ma <u>CU</u>	I the components in the c rom damage due to excess wrent. uses are commonly marked aximum current (called t <u>URRENT RATING</u>) which	sive d with the the fuse	Fuse Wire 5/15/30 Amp PL15345 • Less reveale are legiting controls. How there are a word motions • Less reveale are legiting controls. How there are a word motions • Less reveale are legiting controls. How there are a word motions • Less reveale are legiting controls. How there are a word motions • Less reveale are legiting controls. How there are a word motions • Less reveale are legiting controls. How there are a word motions • Less reveale are and frequency and word motions, and there are distributed word frequency legiting theory.	 PRACTICE QUESTION (2) An electric kettle is rated at 2.0 kW, 230 V. Determine a suitable current rating for the fuse required in the 3-pin plug used for this kettle. Choose from 3 A, 5 A, 13 A, 15 A and 20 A.
ca	nry before melting.			 An LCD television set has a rating of 170 W on the 230 V mains. which of the following fuses would be the most suitable to fit in the plug? A, 5 A, 13 A or 15 A.

3

FXA © 2008

IIT <i>G</i> 482	Module 2	2.2.5	Power	•	HOMEWORK QUESTIONS	
ELECTR. As we all If power is the jo	ICAL ENERGY UNIT - T ready know : ENERGY r is in <u>watts</u> and time is in <u>ule</u> . This is an inconvenie e is a very small quantity o ENERGY (J) = P	THE KILC = POW n <u>seconds</u> , nt unit fo of energy	ER × TIME then the unit of energy r commercial use because as shown below. × TIME (s)	1	 A 12 V battery supplies a current of 2.6 A to a circuit for a perio of 3.5 minutes. Calculate : (a) The quantity of charge which flows through the battery in this time. (b) The energy transferred to the charge by the battery. (c) The energy transferred by the charge to the circuit components. 	
		3.6 x 10 nestic elec	¢Ј	2 3	 (a) A 230 V electric heater draws a current of 6.52 A. Assuming that all the electrical energy supplied is transferred to heat energy, calculate the amount of heat produced when the heate is switched on for 30 minutes. A 230 V electric kettle transfers 6.75 × 10⁶ J of energy in 5 min Calculate the current supplied to the kettle. 	
by o whe	e quantity of energy tran a device having a power ro en it is used for 1 HOUR	ating of 1 (h).	KILOWATT (KW)	4	 A power station generates 250 MW of electricity which is then transmitted through the National Grid at a pd of 320 kV. If the transmission cables have a resistance of 6.0 Ω, calculate: (a) The transmission current. (b) The power loss in the cables. 	
the cost calculate	ber of kWh or 'units' whi of using an electrical app ed from : t (p) = power rating (KW)	pliance foi	r a given time may be	5	 An electric cooker is rated at 9 kW, 230 V. (a) What is the current drawn by the appliance when it is fully switched on ? (b) Choose a suitable fuse for this cooker from the values below : 13 A, 15 A, 20 A, 30 A, 45 A. 	
					IS A, IS A, 20 A, SU A, 45 A. FXA @ 2	0

UNI	T G482	Module 2	2.2.5	Power
6		' light bulb draws a cur the electrical resistanc		mA from a power supply. >?
7	A room is light bulb		of 14 hours	per week by four 60 W
	(a) Calcul	ate the number of kilo	watt-hours c	onsumed in a year .
	(b) How n	nuch will this cost if el	ectricity cos [.]	ts 7.5 p per unit ?
8	(a) Define	e the kilowatt-hour (k	Wh).	
		erage a student uses a . 0 hours every day. Th A .	•	
	(i)	For a period of one we	ek , calculate	:
		1. The number of ki computer.	lowatt-hours	supplied to the
		•		puter if the cost of
		Calculate the electric a period of one week .	charge draw	n by the computer over
		(00	CR AS Physics -	Module 2822 - Jan 2005)