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3.1 Measurements and their errors 
 
3.1.1 - Uses of SI units and their prefixes 
SI units​ are the​ fundamental​ units, they are made up of: 

● Mass (m):​ ​kg​ (kilograms) 
● Length (l): ​m​ ​(metres) 
● Time (t):​ ​s​ (seconds) 
● Amount of substance (n): ​mol​ ​(moles) 
● Temperature (t): ​K​ ​(kelvin) 
● Electric current (I): ​A​ (amperes) 

 
The SI units of quantities can be ​derived​ by their equation, e.g. F=ma 
For example, to find the SI units of force (F) multiply the units of mass and acceleration  ​kg x m s−2  
gives​ ​kgm  ​(Also known as N)s−2  
 
The SI units of voltage can be found by a series of steps: 
 

● V=  ​where E is energy and Q is charge , E=½ m  so the SI units for energy is ​kgQ
E v2 sm2 −2  

(the units for speed (v) are so squaring these gives )sm −1 sm2 −2  
 

● Q=It​ ​(where I is current) so the units for Q are ​As​ (ampere seconds) 
 

● So V=    ​V=As
kgm s2 −2

gm s Ak 2 −3 −1  
 
Below are the ​prefixes​ which could be added before any of the above SI units:  

Name Symbol Multiplier 

Tera T 1012  

Giga G 109  

Mega M 106  

Kilo k 103  

Centi c 10−2  

Milli m 10−3  

Micro µ 10−6  

Nano n 10−9  

Pico p 10−12  

Femto f 10−15  
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Converting mega electron volts to joules: 
1eV=1.6x J10−19   

e.g. convert 76 MeV to joules: 
 First, convert from MeV to eV by multiplying by              76 x  eV106 106   
 Then convert to joules by multiplying by 1.6x 10−19   1.216 x J10−11  

 
Converting ​kWh​ (kilowatt hours) to Joules: 
1 kW = 1000 J/s    1 hour= 3600s 

  1kWh = 1000 x 3600 
  =  3.6x J106  
  =  3.6 MJ 
 
3.1.2 - Limitation of Physical Measurements 
 
Random errors​ affect ​precision​, meaning they cause differences in measurements which causes 
a spread about the mean. You ​cannot​ get rid of all random errors. 
An example of random error is ​electronic noise​ in the circuit of an electrical instrument 
To reduce random errors:  

● Take ​at least 3 repeats​ and calculate a ​mean​, this method also allows ​anomalies to be 
identified. 

● Use ​computers/data loggers/cameras​ to reduce human error and enable ​smaller 
intervals. 

● Use ​appropriate equipment​, e.g a micrometer has higher resolution (0.1 mm) than a ruler 
(1 mm). 
 

Systematic errors​ affect ​accuracy​ and occur due to the apparatus or faults in the experimental 
method. Systematic errors cause all results to be ​too high or too low by the same amount​ ​each 
time. 
An example is a balance that isn’t zeroed correctly (​zero error​) or reading a scale at a different 
angle (this is a ​parallax error​). 
To reduce systematic error: 

● Calibrate​ apparatus by measuring a known value (e.g. weigh 1 kg on a mass balance), if 
the reading is inaccurate then the systematic error is easily identified. 

● In radiation experiments correct for ​background radiation​ by measuring it beforehand and 
excluding it from final results. 

● Read the ​meniscus ​(the central curve on the surface of a liquid)​ at eye level​ (to reduce 
parallax error) and use ​controls​ in experiments. 

 

Precision Precise measurements are consistent, they fluctuate slightly about a mean 
value - this doesn’t indicate the value is accurate 

Repeatability If the original experimenter can redo the experiment with the same 
equipment and method then get the same results it is repeatable 
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Reproducibility If the experiment is redone by a different person or with different techniques 
and equipment and the same results are found, it is reproducible 

Resolution The smallest change in the quantity being measured that gives a 
recognisable change in reading 

Accuracy A measurement close to the true value is accurate 

 
The ​uncertainty​ of a measurement is the bounds in which the accurate value can be expected to 
lie e.g.  20°C ± 2°C , the true value could be within 18-22°C 
 
Absolute Uncertainty​: uncertainty given as a fixed quantity e.g. 7 0.6 V±  

Fractional Uncertainty:​ uncertainty as a fraction of the measurement e.g. 7  V± 3
35  

Percentage Uncertainty:​ uncertainty as a percentage of the measurement e.g. 7 8.6% V±  
 
To reduce percentage and fractional uncertainty, you can measure larger quantities.  
 
Resolution and Uncertainty 
Readings are when ​one value​ is found e.g. reading a thermometer, measurements are when the 
difference between 2 readings ​is found, e.g. a ruler (as both the starting point and end point are 
judged). 
 
The ​uncertainty in a reading​ is ​ ​± half the smallest division​,  

e.g. for a thermometer the smallest division is 1°C so the uncertainty is ±0.5°C. 
The ​uncertainty in a measurement​ ​is ​at least  ±1 smallest division, 

 e.g. a ruler, must include ​both​ the uncertainty for the start and end value, as each end has 
±0.5mm, they are added so the uncertainty in the measurement is  ±1mm. 

 
Digital readings​ and given values will either have the uncertainty quoted or assumed to be  ​± the 
last significant digit​ e.g. 3.2 ± 0.1 V, the ​resolution​ ​of an instrument affects its uncertainty. 
 
For ​repeated data​ the uncertainty is ​half the range​ (largest - smallest value), show as 
mean ± .2

range  
 
You can reduce uncertainty by ​fixing one end​ of a ruler as only the uncertainty in ​one reading​ is 
included. You can also reduce uncertainty by measuring ​multiple instances​,  
e.g. to find the time for 1 swing of a pendulum by measuring the time for 10 giving e.g. 6.2 ± 0.1 s, 
the time for 1 swing is 0.62 ± 0.01s ​(the uncertainty is also divided by 10)​. 
 
Uncertainties​ should be given to the ​same number of significant figures​ as the data. 
 
Combining uncertainties 
 

● Adding / subtracting data -​ ​ADD ABSOLUTE ​UNCERTAINTIES 
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E.g. A thermometer with an uncertainty of 0.5 K shows the temperature of water falling from±
298 0.5 K to 273 0.5K, what is the difference in temperature?± ±

298-273 = 25K       0.5 + 0.5 = 1K (add absolute uncertainties)   difference = 25 1 K±  

● Multiplying / dividing data -​ ADD PERCENTAGE​ UNCERTAINTIES

E.g. a force of 91 3 N is applied to a mass of 7 0.2 kg, what is the acceleration of the mass?± ±

a=F/m ​ =91/7   = 13m s−2    percentage uncertainty= 00value
uncertainty × 1

Work out % uncertainties   ​= 3.3% + 2.9%​ ​ ​add % uncertainties 100    1003
91 ×  + 7

0.2 ×  
   =  6.2% 

So a= 13 6.2% m      6.2% of 13 is 0.8± s−2  

      a=13 0.8±  m s−2

● Raising to a power - ​MULTIPLY PERCENTAGE UNCERTAINTY BY POWER

The radius of a circle is 5 0.3 cm, what is the percentage uncertainty in the area of the circle?±  
Area = π x 25 = 78.5 cm2  
Area = π r2  

% uncertainty in radius = ​= 6%  % uncertainty in area = 6 x 2 (2 is the power from ) 1005
0.3 ×  r2  

= 12% 
78.5 12% ± cm2

Uncertainties and graphs 
Uncertainties are shown as ​error bars​ on graphs, 
e.g. if the uncertainty is 5mm then have 5 squares of error bar on either side of the point
A line of best fit on a graph should ​go through all error bars​ (​excluding anomalous points​).

The ​uncertainty in a gradient​ can be found by lines of best and worst fit, this is especially useful 
when the gradient represents a value such as the acceleration due to gravity: 

● Draw a ​steepest and shallowest​ line of worst fit, it ​must​ go through all the error bars.
● Calculate the gradient of the line of best and worst fit, the uncertainty is the ​difference

between the best and worst gradients.
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percentage uncertainty =  100%best gradient
|best gradient−worst gradient|  ×

(modulus lines show it’s always​ ​positive) 

When the best and worst lines have different y intercepts, you can find the ​uncertainty in the 
y-intercept​, which is |best y intercept-worst y intercept|:

percentage uncertainty =  100%best y intercept
|best y intercept−worst y intercept| ×



3.1.3 - Estimation of physical quantities 

Orders of magnitude​ - ​Powers of ten which describe the size of an object, and which can also be 
used to compare the sizes of objects. 
E.g: The diameter of nuclei have an order of magnitude of around m.01 −14

100 m is two orders of magnitude greater than 1m.

You may be asked to give a value to the ​nearest order of magnitude​, here you must simply 
calculate the value the question is asking you for and give it only as a power of ten 
E.g If the diameter of a hydrogen atom is 1.06 m, find the approximate area of the entire0  × 1 −10

atom (assuming it is perfectly spherical), to the nearest order of magnitude.
Find the area using A= rπ 2 = m0.53 0 )  π × ( × 1 −10 2 .82 0  8 × 1 −21  = m (to 1 s.f)0  1 × 1 −20

Therefore the area to the nearest order of magnitude is m.01 −20

Estimation ​is a skill physicists must use in order to approximate the values of physical quantities, 
in order to make ​comparisons​, or to check if a value they’ve calculated is ​reasonable​. 
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Alternatively, the average of the two maximum and minimum lines can be used to calculate the 
percentage uncertainty:

percentage uncertainty =  100%2
max gradient−min gradient ×




