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STEP | - Hints and Solutions

Question 1

The relationships for ¥ and @ can be obtained by substituting the coordinates of the three known
points into the equation of the line, or by using the formula for calculating the gradient from a pair
of points.

The formula for the sum of the distances is then easy to find and differentiation with respect to ™
will allow the minimum value to be found.

Similarly, the distance for the second part can be written as % P54 9% and again differentiation can
be used to find the value of 7 for which the minimum occurs. Since the minimum value of
¥#% + g% occurs at the same value of M as the minimum value of {#% + G‘g}, the differentiation

can be simplified by just differentiating %+ a*} with respect to M | It is then a simple matter to
write this answer in a form similar to that of the first part.

Question 2

To sketch the graph it is important to know where the stationary points are. Either by considering

the graph of ' = ¥¥—3 or by differentiating it can be seen that there are two minima and one
maximum.

The equation in the second part can be rearranged to show that the solutions correspond to the

intersections of the graph of V' = (8 —3¥ anda straight line. The case requiring care is the two
solution case as this must include the straight line which touches the two minima.

For the next part of the question, differentiation of the equation twice leads quickly to the two

possible values of ¥ . Both cases then need to be considered, but it should be clear that one graph is

a reflection of the other in the V' -axis, so the sets of values for & will be the same for both cases.
5y

The final graph should clearly have a minimum for some negative value of ¥ . dx% will still be 0 at

x= 11  sothere will be two points of inflexion.
Question 3

The sketch of the graph, including a chord and tangent should not cause much difficulty. Adding the
line ¥ =5 should show that the area under the graph lies between two triangles, both with a base

of length & and with heights Bnd and b . Integrating the function between the two limits and then
rearranging will give the correct relationship.

For the second part of the question a different diagram is needed, this time showing the area under
a curve contained within a trapezium and with a trapezium contained within it. The differentiation



and integration of ¥ = @* will produce the Ima expressions required in the final answer and so the

vertical lines ¥ = 0 and ¥ =1 can be used to define the regions.

Question 4

The equations of the tangents at £ and & should be easy to find and then the solution of

simultaneous equations will give the required coordinates for T . Similarly, the equations for the
normal should be easy to find, but it is more difficult to find simplified expressions for the solution to
the simultaneous equations (which are useful for the final part of the question). The factorisation of
the difference between two cubes, ¥ —b¥ =da— bMa® + ab + b3} will be useful for avoiding a lot
of algebraic manipulation. If this expression is simplified correctly then the final result becomes
straightforward.

Question 5

The most obvious approaches to the first integration are to integrate by parts or to use the identity
#n 2y = 28nxc0s X and then make a substitution. The second integration can also be evaluated by
integrating by parts, but the identity for €2& 2% js not as useful.

For the third integration it is necessary to rewrite the integral in a form from which the previous
results can be applied. The first point to note is that the expression within the logarithm is not a

simple cosine function and so the first step to making the expression similar to those used previously
1

- .. A W= X—=— .
is to rewrite it in the form HCO8LX — &}, Once this is done, the substitution of i , with
some knowledge of the relationship between sine and cosine graphs should reduce the integral to a

combination of the two previous ones.
Question 6

By writing down expressions for the height of the pole using the tangent of each of the angles of
elevation, the problem is quickly reduced to a two dimensional problem about lines within a circle.
The simplest way to tackle this is to observe that the triangles in the diagram are similar to each
other, but approaches working with various right angled triangles also lead to the correct solution.

The proof of the identity should be straight forward for those familiar with the commonly used
trigonometric relationships and the inequality is then easily found by considering the consequence
of the constraint placed on p and g. Given that cot is a decreasing function in the required range of
values, the final result follows easily.

Question 7

By substituting * for all of the terms in the recurrence relation the result for the first part should
follow easily. For the second part, the two values ¥ and ¥ can be substituted in both orders into

the relation, giving two equationsin ¥ and ¥ . Solving these two equations then leads to the correct
set of possibilities.



Following the same principle, the substitution of ¥ , ¥ and £ into the relation can be done in three
different ways, leading to three simultaneous equations. Solving these equations gives an equation

in®? and @ , which can be solved to give the two different cases. The case where # + & =1 js easy

to check, and for the case where &= ¥ + {2 + 1% + {2+ 1¥ = 0 it should be noticed that this
canonly occurif # =g =-1 |
Question 8

The new differential equation follows quite easily once the substitution given has been followed. It is
an example of a differential equation that can be solved by separating the variables and so by
evaluating the two integrals that are reached the required form can be obtained.

The same substitution will also reduce the second differential equation to a simpler form and it is
again an example that can be solved by separating the variables. It should be clear that partial
fractions are an appropriate method for evaluating the integral that is required.

Question 9

The first part of the question is a straightforward calculation involving the equations for motion
under uniform acceleration. It is important to explain the reason for choosing the positive square
root however. The final result follows from correct use of an identity for €05 28

It is also easy to find an expression for the range once the time has been calculated and further
application of an identity for €08 2& will give an expression for this in terms of . Differentiation
1
c==
with respect to = will then give the result that the maximum value occurs when 5. The final

part of the question can be solved by substituting the appropriate values of © into the formula for
the range.

Question 10

Although the equation looks complicated, calculations for the time that it takes the stone to drop
and the time for the sound to return allow the first relationship to be deduced quite easily. The

second relationship can be shown by simplifying the expression for T and showing that it is equal to
kD

1
D=—gTs
¥ & This can then be rearranged to give 25

. The final part of the question is then a
substitution of the values given into the formula to obtain the estimate.

Question 11

While the diagram may look a little more complicated than the standard questions on this topic, the
first section of this question requires the usual steps to establish a pair of simultaneous equations.
The difference in the second part of the question is that the acceleration cannot be assumed to be
constant (as the pulley in the middle of the diagram is able to move) and the important extra
relationship that is needed is the relationship between the accelerations at the three points (the two
particles and the pulley).



Question 12

The probabilities for a failure in each year long period need to be calculated by evaluating the
integral and from these it is possible to construct a tree diagram from which the probability can be
calculated. The final part of the question is simply the calculation of a conditional probability. As
always with conditional probability the important step is to deduce which two probabilities need to
be calculated.

Question 13

There are a number of ways to approach this problem. The most obvious is to work out how many
possibilities there are for each number of digits. A clear method for categorising these is needed to
work out the number of possibilities in each case. For example, if there are 4 different digits then
there are five choices for the digits to be used and four choices for the digit to be repeated. There
are then ten choices for the positions of the repeated digits and 3! choices for the order of the
remaining digits. This gives 1200 altogether.



Hints & Solutions for Paper 9470 (STEP I1) June 2012

Question 1
To be honest, the binomial expansions of (1 +x)", in the cases n =1, 2, are used so frequently within AS-
and A-levels that they should be familiar to all candidates taking STEPs. Replacing x by x* is no great
further leap.

The general term in(L— x® ) is easily seen to be (n + 1) x* and the x** term in (1—x® ) (1—x*)™ comes
from 1%+ 2x°x™® +3x2x" + 4x™®.x® + 5x*.1, so that the coefficient of x**is 1+ 2 + 3 + 4 + 5 = 15,
arising from a sum of triangular numbers. Thus, the coefficient of x" is

0 if n=6k +{1,2,4,5}
Tkk+D)k+2) ifn=6k+3
T(k+D(k+2) if n=6k
which is most easily described without using n directly, as here.

In (ii), f(x) = (L+2x° +3x + 4% +5x% +.. J1+x° +x° + x° +...J1+x+x? +x° +...) and the x** term
comes from

1.1.5x% + 1.x8.4x%8 + 1.x223xM2 + 1.x382x% +1.x%1

x4+ 3 x2.3x1 + 3P 2x® + x3xta

+ X6.1.4X18 + X6.X6.3X12 6 12 2X + X6 18 1
x2x3.3x1 + xx%.2x8 +x°x.1

+ x12.1.3x12 + x12 6.ox8 + x2.x*2 1

15 3 2X + X15 9 1

+ x18.1.2x +x8x5.1
+x21 31

+x%.1.1

giving the coefficient of x** as 15 + 2 x (10 + 6 + 3 + 1) = 55,

However, there are lots of ways to go about doing this. For instance ...
Note that, because every non-multiple-of-3 power in bracket 3 is redundant, the x** term comes from

considering f(x) = (1—x® ) (1= x®)” = (1+2x® + 3% + 4% + 5x* +_Ji+2x° +3x° +4x° +..).
Again, every non-multiple-of-6 power in this 2" bracket is also redundant, so one might consider only

f(x) = (1+ 3x® +5x2 +7x*® +9x* +...X1+ 2x°% +3x™ + 4x™® +5x* +)

from which the coefficient of x** is simply calculated as 1 x 5+ 3 x 4 +5x 3+ 7 x 2+ 9 x 1 = 55, This
result, in some form or another, gives the way of working out the coefficient of x°*" for any non-negative

n
integer n. It is immediately obvious that it is Z(n +1-r)(2r +1) which turns out to be the same as
r=0
n+1

Z r2= £ (n+1)(n+2)(2n +3).The proof of this result could be by induction or direct manipulation of the

r=1
standard results for =r and =r?.

The coefft. of x** is 55, the same as for x**, since the extra x only arises from replacing 1 by x, x> by x*,
etc., in the first bracket’s term (at each step of the working) and the coefficients are equal in each case.

In the case when n = 11, the coefficient of X is 12 x 1+ 11 x3+10x 5+ ... + 2 x 21 + 1 x 23 = 650.



Question 2
Firstly, p(q(x)) has degree mn.

(i) Deglp()] =n = Deg[p(p(x))] =n* & Deg[p(P(p()))] = n*
Deg[LHS] < max (ns, n) while RHS is of degree 1. Therefore the LHS is not constant so n=1 and p(x)
is linear. Setting p(x) =ax+b = p(p(x)) = a(ax + b) + b=a%+ (a+ 1)b and
p(P(P())) =afa’x + (a+ 1)b] +b=a’ + (a’ +a+ 1)b.

Then &’ + (@ +a+1)b-3ax-3b+2x=0 = (@*-3a+2)x+ (@ +a-2)b=0

= (a-1)@ +a-2)x+@+a-2)b=0

= (@*+a-2)[(a-1)x+b]=0

= (a+2)(a-1)[@a-1)x+b]=0
We have, then, that a =-2 or 1. In either case, b takes any (arbitrary) value and the solutions are thus

p1(X) =-2x+b and py(x) =x +b.

(i1) Deg[RHS] =4 while Deg[LHS] < max(nz, 2n, n), so it follows that n=2 and p(x) is quadratic.
Setting p(x) = ax® + bx + ¢, we have
2p(p(x)) = 2a(ax® + bx + ¢)* + 2b(ax® + bx + c) + 2¢
= Za{azx4 +2abx® + 2acx® +b*x* + 2bcx+c2} + 2b(ax® + bx + c) + 2¢
Ap(x))’ = 3[a2x4 +2abx® + (Zac +b? )x2 + 2bex + cz] and —4p(x) = - 4ax® — 4bx — 4c.
Thus, LHS = (2a° +3a2 )x* + (4a%h + 6ab)x® + (2ab? + 4a’c + 2ab + 3b° + 6ac — 4a )x?
+ (4abc + 2b + 6bc — 4b Jx + (2ac? + 2bc + 2¢ + 3¢ — 4c),

while the RHS = x*.
Equating terms gives

x*) 2a+3a°-1=0 = (a+1)?(2a-1) = a=-lori

x%) 2ab(2a+3)=0 =b=0

x*)  2a(ac+3c-2)=0 =c=2 when a=-1;i.e. py(x)=-x*+2

OR c=3 when a=%;i.e po(x)= —(x +1)

Note that there are two sets of conditions yet to be used, so the results obtained need to be checked

(visibly) for consistency:
x') 2b(2ac+b+3c—2)=0 checks and x°) c(2ac + 3c - 2) =0 checks also.

Question 3
It helps greatly to begin with, to note that if t =+/x* +1 + X, then % = /X% +1—x. These then give the

2t 2

so that If(\/xz +1+x) dx = jf(t)x%(l+ti2j dt = %If(x){b%j dx , as required.
0 1

1 X

result x =1t —1t™, from which we find 3—1(:1 1172 and (changing the limits) x : (0, ) — t : (1, ),

For the first integral, I, = —y dx , we are using f(x) = iz in the result established initially.
X

Then Iy =%T(1+—) dx :%Tx X )dxz%[-i-%rz%(mu%):%.
1



In the case of the second integral, the substitution x = tand = dx = sec’9dé. Also V1+x? =secd and
the required change of limits yields (0, 17)— (0, ). We then have

i iz 3
I, = j; dé = j(&j dé [Note the importance of changing to sec and tan]

2 (1+sin @)’ *secd+tan @
7 o 2
= I sect -.sec’ 6 dé :j SRENN
0 sec¢9+tam9 0i~/x2+l+xi
é[uﬂ t?+1
We now note, matching this up with the initial result, that we are using f(t) = e = 2; , SO that
1)t +1 °°_ . 1 2 1]
IZZ%J.( t2 ](W] :%J't +2t +1 6)dt :%[—I—gt—g—st—s} :%(04‘14‘%4‘%):%.
1 1 1
Question 4
(i) This first result is easily established: Forn, k> 1, n***>n* and k+ 1>k so (k+1)xn“*>kxn
1

= K+ e < KF (since all terms are positive).

Then In(1+£]:1— 12+ 13— 14+ 15—... (a result which is valid since 0 < 1<1)
n/ n 2n° 3n° 4n" 5n n

= 1_(212 - 313 j — (414 - 515 ] —.. < % since each bracketed term is positive, using
n n n n n
Al

1 n
the previous result. Exponentiating then gives 1+1 <e" = (1+£J <e.
n n
(if) A bit of preliminary log. work enables us to use the In(1 + x) result on

[2y+1j_ ( 1) ( 1]_(1 1 1 1 1 ]
In =Infl+—|-Infl-—|=| —- + - + —..
2y-1 2y 2y) \2y 2(2y)* 3(2y)° 4Q2y)* 5(2y)°

_(_i_l_l_l_l_J
2y 2(2y)* 3(2y)°® 42y)* 5(2y)°

= 2(i+ 1 s+ L c +j >i (since all terms after the first are positive).
2y 3(2y)° 5(2y) y

Again, note that we should justify that the series is valid for 0 < Zi <1 ie. y> 3 inorder to justify the
y

2y +1
2y -1

y
use of the given series. It then follows that In( J > 1, and setting y = n + 3 (the crucial final step)

. on+2)\""2 1\""2
gives In >1 = |[1+= >e.
2n n




(iii) This final part only required a fairly informal argument, but the details still required a little bit of care
in order to avoid being too vague.

1\""2 1Y 1)2 1\ Y .
Asn — oo, (1+—j :(1+—J x(1+—j —>(1+—j x1+ —>(1+—j from above and e is squeezed
n n n n n

into the same limit from both above and below.

Question 5

With any curve-sketching question of this kind, it is important to grasp those features that are important
and ignore those that aren’t. For instance, throughout this question, the position of the y-axis is entirely
immaterial: it could be drawn through any branch of the curves in question or, indeed, appear as an

asymptote. So the usually key detail of the y-intercept, at (O, ! 1) in part (i), does not help decide

2

what the function is up to. The asymptotes, turning points (clearly important in part (ii) since they are
specifically requested), and any symmetries are important. The other key features to decide upon are the
“short-term” (when x is small) and the “long-term” (as x — + o) behaviours.

In (i), there are vertical asymptotesat x=a—1 and x =a + 1; while the x-axis is a horizontal asymptote.
There is symmetry in the line x = a (a consequence of which is the maximum TP in the “middle” branch)

and the “long-term” behaviour of the curve is that it ultimately resembles the graph of y = iz
X

(ii) Differentiating the function in (ii) gives

g'(x) = {(x=b)[(x-a)? -1]+ (x-a)[(x-b)? —1]

-2
[x—a)? —1f|(x-b)? -1f
and setting the numerator =0 = (x—a)(x—b)[x —a+x—b]+[x—a+x—b]=0. Factorising yields
a+h+./(a+h)?—4ab+4
, .

(2x—a-b)(x* —(a+h)x+(ab—1))=0, so that x = 1 (a+b)or

In the first case, where b>a+ 2 (i.e. a+1<b-1), there are five branches of the curve, with 4 vertical
asymptotes: x =a+ 1 and x =b £ 1. As the function changes sign as it “crosses” each asymptote, and the

. N 1 .
“long-term” behaviour is still to resemble y = —-, these branches alternate above and below the x-axis,
X

with symmetry in x =%(a+b).

In the second case, whereb=a+ 2 (i.e. a+ 1=Db-1), the very middle section has collapsed, leaving
only the four branches, but the curve is otherwise essentially unchanged from the previous case.

Question 6

A quick diagram helps here, leading to the important observation, from the
GCSE geometry result “opposite angles of a cyclic quad. add to 180°”, that
ZBCD =180° - 4. Then, using the Cosine Rule twice (and noting that
c0s(180° — @) = — cosd):

/D in ABAD: BD? = a” + d? - 2ad cos@

in ABCD: BD? = b? + ¢? + 2bc cosé

a’-b*-c*+d?

Equating for BD? and re-arranging gives cos¢ =
2(ad +bc)




Next, the well-known formula for triangle area, A = ZabsinC, twice, gives Q = +adsinéd+3bcsinég,

2Q or 4Q
ad+bc ~ 2(ad +bc)

16Q° (a2 —b? —c? +d?)
4(ad + bc)? 4(ad + bc)?
result, 16Q% = 4(ad +bc)* —(a® —b? —c? +d? ).

since sin(z— 6) =sin#. Rearranging then gives sind =

Use of sin®0+cos’d =1 = =1 and this then gives the printed

Then, 16Q%= (Zad +2bc—a’*+b*+c?—d 2XZad +2bc+a*-b*-c?+d 2) by the difference-of-two-
squares factorisation

= (b+c]? ~[a—d]?Jfa+d]’ ~[b—c]?)
= (lo+c]-[a-d])[b+c]+[a—d])[a+d]-[b—c]\[a+d]+[b—c])
using the difference-of-two-squares factorisation in each large bracket
=(b+c+d-aja+b+c—d)a+c+d-b)a+b+d-c).
Splitting the 16 into four 2’s (one per bracket) and using 2s=a+b+c+d
L Q= (2s—2a)(2s—2b)(2s—2c)(2s-2d)
2 2 2 2
Finally, for a triangle (guaranteed cyclic), letting d - 0 (Or s—d — s Or let D — A), we get the result
known as Heron’s Formula: A = \/s(s —a)(s—b)(s—c).

=(s—a)(s—b)(s—c)(s—d).

Question 7
Many of you will know that this point G, used here, is the centroid of the triangle, and has position vector

g= %(Xl X, +X3)-

Then GX, =X, —g = (2%, =X, —X;) and so GY, =—14,(2x, =X, =X, ), where 4; > 0.

Also OY, = 0G +GY, = 1(x, +X, +X,) =12, (2x, =X, =X, ) = 1 ([L— 240, +[1+ 4, ](X, +X,)), the first
printed result.

The really critical observation here is that the circle centre O, radius 1 has equation |x|*=1 or x.x =1,
where x can be the p.v. of any point on the circle.

Thus, since OT(lO—Yi =1, we have

1= 1{1-24)% + 201+ 4,)% + 21— 24) 1+ 4,)Xy. (X, +X3) + 201+ 4,) X, X, |

= 9=1-44 +42° +2+ 42, + 227 +2(1—-22) A+ A)X. (X, +X3) + 2(1+ A,)* X, X,
= 0=-31-A4)0+4)+ Q- 24) 1+ A )%y, (X, +X;) + L+ 4,)* X, %,

As 11>0, 0=-31-4)+A-22)%,, (X, +X3) + @+ 4)X,. X,

= 0=-3+34+ (X1.X2 T X X5 + Xs.xl)+ Ay (Xp.X5) = Zil(xl.xz + X1.X3)

3-la+ f+ .
= 21:3+0({_2?_72/7)/,U8In9 a:XZ .XS' ,B:X3 'Xl and y:xl.xz_
Similarly, 4, = 3-(a+pB+7) and 2, = 3-(a+p+7)



X; . _
Using GX, :i (i=1,23), GX1+GX2+GX3 :i+i i:9+(“+ﬂ+7) da+Lf+y)
GY, A GY, GY, GY, A4 4, A, 3—(a+p+y)
_9-3a+p+y) _
= =3
3—(a+pf+7)
. . . . . 1 GX,
[Interestingly, this result generalises to n points on a circle: ZG—Y' =n.]
i=1 i
Question 8
2 2 2 2 2 2 a’+p—q° ;
p-a>q (>0 = p°-2af+a">qQ" = a"+p°-q° >2a0f = —— >2 = theopening
(94
2 2 42
result, m—2>0.
af
u,’-q?
Uy, =— etc. = u’-u, U, _,=q°>=u., —u,,,u._ (since the result is true at all stages) and
un—l

equatlng for q2 = un(un +un+2):un+1(un—l+un+l)'

o u, +u u, ,+u . U, ,+U.,; . . .
Now this gives —*—"*2 = “n=1 "+l \whjch = -1 _""*1 jg constant (independent of n). Calling
n+1 un un
this constant p gives u,., — pu, +u, , =0, as required. In order to determine p, we only need to use the
u, ,+u . .
fact that p = —"=L—"*1 for all n, so we choose the first few terms to work with.
un
p*-q’
2 2 U. + U a+ 2 2 2
UZZ’B q and p=— "z = a _a +pB -q¢ .
a u, p af
2 2 2 2 2
Alternatively, u, =y = ﬂ—q: pf-a < p= m
a aff
2 22
2 _ 2 2+ﬂ2— 2 (Igaq]+ﬂ2_q2
and U3=u=p7_ﬂ<:> p:7/ 1= 2 2
B 1) B -q
P
(24

_ (ﬂz _qz)Z +a2(,82 _qz) B -t +a?
BB -q°) o
since % —q° =0 as u, non-zero (given). Since p is consistent for any chosen «, g, the proof follows
inductively on any two consecutive terms of the sequence.

Finally, on to the given cases.

2 2 2
If ﬂ> a+q, Uy —U, = (p_l)un —U,, :(“x—q_l]un —U,_;
af
> (2-1u, —u,, by the initial result

> U, —U,
Hence, if u, —u, , >0 thensois u, ,—u,.Since f> ¢, u,—u, >0 and proof follows inductively.



If p=a+q then p=2 and u,,, —u, =u, —u, , so thatthe sequence is an AP.

Also, = a, Uy =a+q, U, =a+2q, ... = the common difference is q (and we still have a strictly
increasing sequence, since g > 0 given).

Question 9
In the standard way, we use the constant-acceleration formulae to get

x = utcosa and y =2h—utsina— 1gt®.
2

Whenx=a, t = . Substituting this into the equation fory = y=2h-atana — gaz sec’ o
ucosa 2u
Asy > h at this point (the ball, assuming it to be “a particle”, is above the net), we get
2
a 1 2(h-atan i
h—atana > g 5 sec’a = — < %, as required.
2u u ga“sec’ o

For the next part, we sety =0 iny = 2h —ut sina— gt* and solve as a quadratic in t to get

(o —2usina ++/4u’sin? ¢ +16gh

2 ... (the positive root is required).

Ju?sin? g +4gh —usina

Setting x = (u cosa )t and noting that x <b, ucosa <b
g
= yJu?sin?qa +4gh < b9 usina.
ucosa

There are several ways to proceed from here, but this is (perhaps) the most straightforward.
b’g?sec’

Squaring = u’sin®a +4gh < " +2bgtana +u’sin’ a

b*gsec’ a
uZ

Cancelling u®sin’ « both sides & dividing by g = 4h < +2btana

2(2h—-btane) 1
< JR—

b’gsec’a U’

Using the first result, iz < —Z(hz_ atazn 2) ,inhere = 2(2? — btin ) . 2(h2— atazn 2)
u a‘gsec” « b gsec” a a‘gsec” «

Re-arranging for tanae = ab(b—a)tana < h(b2 - 2a2), which leads to the required final answer
h(b? — 2a?)

ab(b-a)
could be negative) to explain that b >a (we are now on the other side of the net to the projection point)
else the direction of the inequality would reverse.

Re-arranging for iz =
u

tana < . However, it is necessary (since we might otherwise be dividing by a quantity that



Question 10

As with many statics problems, a good diagram is essential to successful progress. Then there are
relatively few mechanical principles to be applied ... resolving (twice), taking moments, and the standard
“Friction Law”. It is, of course, also important to get the angles right.

Taking moments about M :
Riasing =Ry asing+ F; acosg+ F, acosg

Using the Friction Law : F1 = uR; and Fy=uR;

Dividing by cos¢ and re-arranging
Ritang =Ry tang+ uR; + uR;
B = (Ri—-Ry)tang = u(R1 +Ry)

Fy W (OI‘\ mg)

For the second part, it seems likely that we will have to resolve twice (not having yet used this particular
set of tools), though we could take moments about some other point in place of one resolution. There is
also the question of which directions to resolve in — here, it should be clear very quickly that “horizontally
and vertically” will only yield some very messy results.

Moments about O : x(R1—R2) r=Wrsingsing

Resolving // AB : (R1—R2) cosg + 1 (R1 + Ry) sing=W siné

(Give one Al here if all correct apart from a — sign)

Resolving 1"AB : (Ry + Ry) sing — 1 (R; — Ry) cosg=W cosd

Note that only two of these are actually required, but it may be easier to write them all down first and then
decide which two are best used.

(R, —R,)cos¢g+ u(R, +R,)sing
(R, +R;)sing — u(R, —R,)cos¢
(R, —R,)cosg + (R, —R,) tangsin ¢

(R - RZ)MSin¢_ﬂ(Rl —R,)cos¢
7

Dividing these last two eqns. = tand =

Using firstresult, #(R1+R2) =(R1—Ry) tang = tanéd =

COS ¢ + tan gsin ¢

tang .
Jsm @ — 1 COS¢P
MU

= tanf =

. (There is no need to note that Ry # R, for then the rod would hve to be

positioned symmetrically in the cylinder.)

,u(c052¢+sin2¢) B 1
sing—u’cos’g  1-cos® ¢— u?cos’ ¢
U ur?

o) T

Multiplying throughout by xcos¢ = tané = and, using

a .
CoS¢ =— gives tanf =
r

2

Rl_RZ
R, +R,

Finally, tan A = i =[ Jtan¢, from the first result, <tang = A< ¢ .



Question 11
Again, a diagram is really useful for helping put ones thoughts in order; also, we are going to have to
consider what is going on generally (and not just “pattern-spot” our way up the line).

Before i ™ collision After i " collision
— U — Vi1 —Vi
i
Pi ® Bi-1 Bi

Mass im (k +Li(i—1))m Mass (k+3ii+D)m
Using the principle of Conservation of Linear Momentum,
CLM > mu+MVi_;=(M+im)V, (NBVy=0) leadsto

v, u v, 2u 3u nu 2nu

- V,=— V=V, = = .
k+1 k+1+2" ° k+1+2+3 k+in(n+1) 2k+n(n+1)

Alternatively, CLM — for all particles gives mu + Zm(%j + 3m(%j ot nm[EJ =(k+in(n+1))mv,
n

and rearranging for V=V, yields V, = L
2k +n(n+1)
The last collision occurs when V, > —%_ | ie. 2nu > u
n+1 N(N+D)+n(n+1) n+1

= 2n(n+)=>N(N+D)+n(n+1) = n(n+1)>N(N+1) = thereare N collisions.

N 2
Now, the total KE of all the P;’s is ) 1(im) [Ej =
- i

i=1

NI
3
Cm

2.

2
The final KE of the block is 5 N(N +1)mVN2:%N(N+1)m( ! j =§mu2( N j
N +

N
Therefore, the loss in KE is the difference: %muzz_1 - %muz( N j
=y

N+1
Since —v_—1- 1 , the loss in KE is %mu2(1+£+1+...+i—1+ L j = imu? (Ej
N +1 N +1 2 3 N ;




Question 12
This can be broken down into more (four) separate cases, but there is no need to:
P(light on) =p x 2 x3 + (1 -p) x2 x1 = 1(1+2p), and then the conditional probability
11— _
P(Hall [on)= 307 P) - A=P)
s1+2p) (@+2p)

To make progress with this next part of the question, it is important to recognise the underlying binomial
distribution, and that each day represents one such (Bernouilli) trial. We are thus dealing with B(7, p1),

1-p)

where p; = is the previously given answer.
@+2p)

For the modal value to be 3, we must have P(2) < P(3) < P(4); that is,
7 7 7 7
[Zj( pl)z(l_ pl)5 < [:J( pl)s(l_ p1)4 and [‘J( pl)A(l_ p1)3 < [?J( pl)s(l_ p1)4-

. @-p ..
Usin = ——— gives
g Pa 1+ 2p) g
1-pY( 3p Y 1-p Y[ 3p Y
21 =P P | <35 == P P = 3@p)<5i-p) = p<E
1+2p ) \1+2p 1+2p ) (1+2p
and
1-p ) 3 ? 1-p ’ 3p *
35 =P P_| <35 — (1-p)<@3p) = p>1.
1+2p ) \(1+2p 1+2p ) (1+2p
Question 13

Working with the distribution Po(2 = kzy?), P(no supermarkets) = e “¥” and P(Y <y)=1— e %"
Differentiating w.r.t. y to find the pdf of Y = f(y) = 2kz y e_k’Zy2 , as given. Then

E(Y) = [ 2kzy’ e~ %™ dy . Using Integration by Parts and writing 2k y2 e~ ¥®” as y (2k7r y e_k”yz)
0

_ o0 o0 _ 2 o0 _ 2 . .
gives E(Y) :[y(e kay? ﬂ +[e Y dy =0+ [e “% dy. It is useful (but not essential) to use the
0 0 0
T2 1z 1

1
simplifying substitution x = y~/2kz atthisstagetoget —— | e dx = = (by the
vV 2kz -([ v 2kx 2 2&

given result, relating to the standard normal distribution’s pdf, at the very beginning of the question).

% ka2 . : N .
Next, E(Y?) = [ 2kry°e k%% dy , and using Integration by Parts and, in a similar way to earlier,
0

writing 2kz y? e Y’ as y? (an ye_k”yzj, E(Y?) = [yz (e—kﬂyzﬂ + jzye—kﬂyz dy
0 0

1< S - | 2 |” ] . o 1
=0+ —_[2k7r ye kny® = —{ e~ kny } (using a previous result, or by substitution) = —
kz 0 kr 0 krz
1 1 4-

= Var(Y) = o Wﬂ , the given answer, as required.
T T



STEP 3 2012 Hints and Solutions

2
1. The stem integrates to give z = y" (Z—z) and for part (i) using n = 1, the stem gives

d d . . _ . . -
é = ﬁﬁ which can solved for z using the initial conditions, and the integrated stem is a first

order differential equation for y, which when solved, again with the initial conditions, produces the
required result. Part (ii) follows the same pattern, with n = —2 instead, which has solution

1
y = eExz
2. The simplification in the opening is (1 - x2n+1) , obtained by repeated use of the
difference of two squares. A simple algebraic rearrangement, followed by taking a limit, the
logarithm of both expressions, and differentiation produces the other three results in part (i). Part
(i) can be obtained by replacing x by x3 inIn(1 —x) = —Z?‘;Oln(l + xzr) from part (i),
factorising the difference and the sums of cubes and subtracting that part (i) result before
differentiating. An alternative is to replicate part (i) using instead the product

21’l+1

A+x+x)A —x+xDA -2 +xHA —x* +x8) . (1 - 22" +x
care is required with the rearrangement, and consideration of the limit.

) , but then a little extra

3. The two parabolas, with vertices oriented in the direction of the positive axes, touch in the
third quadrant in case (a), and in the first quadrant in the other three cases. In case (b), there are
intersections in the second and third quadrants, in (c) in the third and fourth, and in (d), the trickiest
case, they are in the third quadrant and in the first, between the touching point and the vertex of
the parabola on the x axis. The first result of part (ii)is obtained by eliminating y between the two
equations, the second by differentiating and equating gradients, and the third, by eliminating x*,
(a* = aa®), from the first result using the second.

21 —1+v13 13 5 k
—E<2(d),a— ,k——\/13—5,;<2(d),

The cases that ariseare a =1, =21, 5 5

L3

m

anda=L\/13, k="2Vi3-2 k<0 (a).
2 2 2

1

n!

Similarly, (n + 1)? can be writtenas n(n—1) +3n+1,and 2n—1)3 as 8n(n—1)(n —2) +
n?+1

D) o

4. Writing % as % + — and then cancelling the first fraction, give exponential series.

12n(n — 1) + 2n — 1, the latter giving the result 21e + 1. Using partial fractions, n

. 5 . . .
be writtenas 1 + ﬁ 5 the first term giving a GP, and the other two, log series. The result for

part (ii) isthus 12 —16In2 .

5. For non-integer rational points, it makes sense to use values of cos8 and sinf based on
Pythagorean triples such as 3,4, 5 or 5, 12, 13, The technique for (i) (b) can be used for (ii) (a),
merely by changing the value of m, whereas for (ii) (b), a slightly more involved expression is needed
such as x = acos 6 + bvVmsin@, y=asinf — bvVmcos 6 . For (i) (c), there are two alternatives
that work sensibly, = a cosh 8 + vVm sinh @, y = asinh 8 + Vm cosh @

or x =asecl +Vm tanf, y = atan + Vm sec¥.



A completely different approach for the last part of the question is to write
x%2 —y%2 = (x +y)(x — y) = 7 and to choose x + ¥y = a + b\/2 with nearly any choices of rational

a and b possible. Then,as x —y = ﬁ, and numbers of the form a + bv/2 are a field over the

operations X and +, x — y has to be of the correct form, and then solving for x and y, they
likewise have to be of the required form.
Some possible solutions are
(i)(a) (1,0) and (%,g) ,(b)(1,1),14+m,and (g,%) (usingm =1,cos8 = %)
(ii)(a) (1,\/2) and (g + E\/Z,g - S\/Z) (usingm = 2,cos8 = %) , (b) (g + g\/Z,l—Sz - %\/2) (using
a=3,b=1, cosf =§), (c) (%+%\/§,35—6+§\/2) (usingm =2,a =3 and coshf =§,
sinh @ =1 or sec@ =E,tan9 =E)

5 5 5
6. Substituting x + iy for z in the quadratic equation and equating real and imaginary parts
yields the first two results, the imaginary gives two situations, one as required and the other
substituted into the real gives the second. The first of these two results substituted into the real
gives a circle radius 1, centre the origin, whilst the second gives the real axis without the origin. The
second quadratic equation succumbs to the same approach giving the real axis without the origin
(again), and a circle centre (—1,0) radius 1 also omitting the origin. The same approach in the third

—x2+Vx%—8x
case yields the real axis with p = % and considering the discriminant, x < 0 and x = 2.
3
On the other hand, p = —2x produces y2 == x+1
7. The second order differential equation y + 7y + 6y = 0 may be obtained by

differentiating the first equation, then substituting for Z using the other equation, and then doing
likewise for z using the first again. The solutions for y and z follow in the usual manner. Parts (i)

S _ 9=t _ 9 ,—6t _c(e®-1) ¢ ceSle=1) gt ;
and (ii) yield z,(t) = 2e 2e v and z,(t) = oD © oD © respectively. Part (iii)
merely requires the sum to be expanded and two geometric progressions emerge so that
_ 2e (e°-1)
T e—1(e6-1)
8. F,=1,F;=2,F =3,F; =5 soboth expressions in part (i) equal -1. Considering either

[(FiFnss — Fpy1Fns2) — (FpooFppq — Foi )] or (FyFrys — FrgaFpgo) + (Faoq1Frgo — BiFnyq)
and applying the recurrence relation, both can be found to be zero. \so the given expression is
shown to be 1 if nis odd and -1 if n is even. The tan compound angle formula enables the proof in
part (iii) to be completed once the initial recurrence relation and the result from part (ii) have been
applied to the expression obtained following algebraic simplification. Rearranging the result and

substituting into the required sum gives, by the method of differences, Y5>, tan™! (F ! ) = %
2r+1



9. Eliminating Ty, T, , a, and «a between the five equations myg — T, = mya,
Tir—Ty,r=I1a,T,—myg=mya,a= %, and P+ Mg = Mg + T, + T, yields the required

result for I . The only difference in the second part is that the second equation becomes

((my+my)P—4mymyg)r?— (my—my)Cr

Tir — T,r — C = I, and so the same elimination yields [ =

(m1+my)g—P !
which can be seen to be smaller than that in part (i). The first four equations in this second part give

c I .
mg-—myg - = (ml +m, + r_Z) a,andsoasa > 0, the required result follows.

10. After motion commences, the next at rest position has the string at g to the vertical.

Conserving energy between the two at rest positions gives 4 = 3mg . Conserving energy for the
general position and resolving radially, bearing in mind that the angle of the radius to the vertical is
twice the angle of the string to the vertical, and using a double angle formula gives the required
result. The discriminant being negative or completing the square demonstrates that the reaction
force is always positive.

11. Various approaches can be used to find the energy terms. If potential energy zero level is

taken to be at P, then the initial potential energy is —2Mg% . When the particle has fallen a
distance x, the kinetic energy of the particle is %mvz, the potential energy of the particle is —mgx,
the potential energy of the part of the stationary piece of string of length x is — zx_L 2Mg g , the
potential energy of the remaining piece of (doubled up) string is — (1 — Zx_L) 2Mg (x + % (L - %x)) ,

1
L—=x
2

and the kinetic energy of the shorter moving piece is 1 2M v?. This yields the first result and

2 2L
differentiation of it yields the second. As 0 < x < 2L, ML — % > % ,as Mgx > 0 and the

ng(mL +ML—%)

denominator is twice a square > 0 , the final result follows.

2(mL+ML—%)2

12. The sketched region contained by AB, and the two line segments connecting A and B to the
2
centre of the triangle. A simple approach for the pdfis via P(X > x) « G - x) , finding the

constant of proportionality and then differentiating to give the required result. E(X) = é .

2

For the second part, g(x) = 192 G - x) ,andso E(X) = i_

P(z<Z<z+6Z)
P(a<Z<b)

E(X|X >0) = E(c6Z + u|oZ + u > 0) yields the first result of part (ii), and that

13. That P(z<Z <z+d6zla<Z<b)= yields the part (i) result. Similarly, that

m=E (|X]) = EX|X>0)P(X>0)+ E(—X|X <0) P(X <0) yields the second.
Using Var(X) = E(X?) — u? = 0% ,andso

Var(IXD) = E(IX]*) — (EIX])? = E(X?) —m? = p* + 0% —m?





