GCSE Maths - Ratio, Proportion and Rates of Change

Ratio and Similar Shapes

Worksheet

This worksheet will show you how to work out different types of ratio and similar shapes questions. Each section contains a worked example, a question with hints and then questions for you to work through on your own.

Section A

Worked Example

Find the ratio of the area of A to the area of B

Step 1: Find the area of each rectangle.
The formula for the area of a rectangle is base \times height.
Area of shape A: $4 \times 3=12 \mathrm{~cm}^{2}$
Area of shape B: $3.5 \times 4=14 \mathrm{~cm}^{2}$
Step 2: Note these areas as a ratio in the form asked for in the question.

> Area of Shape $A:$ Area of Shape B
> $12: 14$

Step 3: Simplify the ratio.
Divide both sides by the same number until the ratio is in its simplest form.

$$
12: 14
$$

$$
6: 7
$$

Guided Example

Find the ratio of the volume of A to the volume of B

Step 1: Find the volume of cylinder A and B.

Step 2: Form these volumes into a ratio of $A: B$

Step 3: Simplify the ratio by eliminating π from either side, and then dividing both sides by the same number.

Now it's your turn!

If you get stuck, look back at the worked and guided examples.

1. The base of cone P has a radius of 4 cm and is 12 cm high. Cone Q is 10 cm high and has a base with radius 5 cm . Work out the ratio of the volume of cone P to cone Q.
2. The ratio of the size of Anna's garden to Brandon's garden is 11:7. If Anna's garden is $169.4 \mathrm{~m}^{2}$, what is the area of Brandon's garden?
3. The surface area of the moon is 14.6 square miles.

The surface area of Earth is 196.9 square miles.
Write the ratio of the surface area of the moon to the surface area of the Earth in the form $1: n$, where n is an integer rounded to the nearest whole number.

Section B

Worked Example

Are triangle ABC and triangle PQR similar? Explain your answer.

Step 1: Calculate the missing angles of the triangles, to deduce as much information about the triangles as possible.

$$
\begin{aligned}
& \angle A C B=180-50-51=79^{\circ} \\
& \angle Q P R=180-51-79=50^{\circ}
\end{aligned}
$$

Step 2: Look at the information we have about each triangle and draw similarities between them.

$$
\begin{aligned}
& \angle A B C=51^{\circ}=\angle P Q R \\
& \angle A C B=79^{\circ}=\angle Q R P \\
& \angle B A C=50^{\circ}=\angle Q P R
\end{aligned}
$$

Step 3: Decide which condition you can prove with the sides/angles you have.

You know that triangle $A B C$ and $P Q R$ have three pairs of equal angles. So, the triangles
satisfy the condition $\boldsymbol{A A A}$, and can be said to be similar. satisfy the condition $\mathbf{A A A}$, and can be said to be similar.

Guided Example

Are triangles ABC and WXY similar? Explain your answer.

Step 1: Calculate the missing sides of the triangles in order to explore whether we can prove any of the conditions for similarity.

Step 2: Make links between the triangles, by looking for scale factors between pairs of sides or identifying pairs of angles of the same size.

Step x: With the information of both triangles, decide whether the conditions for similarity between triangles (AAA, SAS, SSS) have been met.

Now it's your turn!

If you get stuck, look back at the worked and guided examples.
4. Are the following pairs of triangles similar? Explain your answers
a)

b)

c)

d)

Section C

Worked Example

Find the linear scale factor between cylinders A and B.

Step 1: Find the scale factor by dividing the length of the similar sides in cylinder A and B.

$$
\text { Linear Scale Factor }=\frac{\text { Height of Cylinder } B}{\text { Height of Cylinder } A}=\frac{12}{8}=1.5
$$

This means the length and circumference measurements of cylinder B are 1.5 times greater than the corresponding measurements in cylinder A.

Guided Example

Rectangle S has a height of 3 cm . Rectangle T has a height of 15 cm . Find the area scale factor between rectangle S and T.

Step 1: Find the linear scale factor by dividing the length of the similar sides in rectangle A and B.

Step 2: To find the area scale factor $\left(k^{2}\right)$, square the linear scale factor you have found.

Now it's your turn!
If you get stuck, look back at the worked and guided examples.
5. A standard teacup holds 150 ml of liquid. An enlarged teacup holds 216 ml of liquid. What is the volume scale factor to go from the standard teacup to the enlarged version?
6. A hexagon has an area of $22.1 \mathrm{~cm}^{2}$. If it is enlarged to an area of $47.736 \mathrm{~cm}^{2}$, by what factor has the area, and lengths, increased?
7. These two rectangles are similar. What is the length scale factor?

Section D

Worked Example

A company is modelling a prototype of its newest candle. The model is 7 cm high and weighs 50 g . If the actual prototype will be 21 cm high, how much can they expect the prototype to weigh?

Step 1: Calculate the linear scale factor (k) between the model and the prototype.

$$
\begin{gathered}
\frac{\text { Prototype Height }}{\text { Model Height }}=k \\
21 \div 7=3
\end{gathered}
$$

The height of the prototype is three times the height of the model.

Step 2: Cube the linear scale factor to find the volume scale factor $\left(k^{3}\right)$.

$$
k^{3}=3^{3}=27
$$

Step 3: Multiply the mass of the model by the volume scale factor, to find the volume of the prototype.

$$
50 g \times k^{3}=50 g \times 27=1350 g
$$

The actual prototype weighs 1.35 kg .

Guided Example

Tank A has a surface area of $280 \mathrm{~cm}^{2}$. If tank B has a surface area of $70 \mathrm{~cm}^{2}$, what is the length of the base of tank B.

Step 1: Divide the surface area of tank A by that of $\operatorname{tank} B$, to find the area scale factor.

Step 2: Find the length scale factor by square root the area scale factor.

Step 3: Divide the base of tank A by the length scale factor, to find the base of tank B.

Now it's your turn!

If you get stuck, look back at the worked and guided examples.
8. A carpenter makes a chest for his daughter, and a miniature version for his daughter's doll house. The version for the doll house takes $50 \mathrm{~cm}^{2}$ of wallpaper for decoration, whilst the real-life version takes $450 \mathrm{~cm}^{2}$. If the chest for the doll house is 1.2 cm high, how tall is the chest for his daughter?
9. Cone A has a height of 6 cm , cone B has a height of 9 cm and cone C is 15 cm high.

Using the information, what is the volume of cone B and the surface area of cone C ?

volume: $18 \pi \mathrm{~cm}^{3}$

10. Mike is trying to measure a tree. When he is 50 m from the tree and holds his middle finger to it, his finger completely covers the tree. His finger is 7 cm long.

He moves backwards, and now his index finger, which is 6 cm long, completely covers the tree.

How far did he move backwards?

