

# GCSE Maths – Ratio, Proportion and Rates of Change

## **Compound Growth and Decay**

Worksheet

WORKED SOLUTIONS

This worksheet will show you how to work out different types of compound growth and decay questions. Each section contains a worked example, a question with hints and then questions for you to work through on your own.

This work by <u>PMT Education</u> is licensed under <u>CC BY-NC-ND 4.0</u>









### Section A

### Worked Example

The population of 250 rabbits in a field increases by 3% each year. How many rabbits will there be after 4 years?

**Step 1**: Find values for  $N_0$  and t for use in the formula  $N = N_0 \times \left(1 + \frac{percentage}{100}\right)^n$ .

$$N_0 = 250$$
$$t = 4$$

Step 2: Substitute into the formula to calculate the value of N.

$$N = N_0 \times \left(1 + \frac{percentage}{100}\right)^n$$
$$N = 250 \times \left(1 + \frac{3}{100}\right)^4$$

 $N = 250 \times 1.03^4 = 281.377 \dots$ 

**Step 3:** Form a conclusion.

To the nearest whole number there will be 281 rabbits in the field after 4 years.

### Guided Example

The population of a beehive is currently 2000, however due to some circumstances the population is increasing by 7% a year. What is the population of the beehive after 10 years to 3 significant figures?

Step 1: Find values for  $N_0$  and t for use in the formula  $N = N_0 \times \left(1 + \frac{percentage}{100}\right)^n$ .  $N_0 = 2000$ t = 10

Step 2: Substitute into the formula to calculate the value of N.

Ν

$$= 2000 \times \left(1 + \frac{7}{100}\right)$$
$$= 2000 \times 1.07^{10}$$
$$= 3934.3...$$

**Step 3:** Form a conclusion.

To 3sp there would be 3930 bees in 10years.

**D O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O** 

3930

S www.pmt.education





### Now it's your turn!

If you get stuck, look back at the worked and guided examples.

1. Red Squirrels are entering the UK at a rate of 5.2% a year. Currently there are 590 red squirrels in the UK. What is the expected number red squirrels after 6 years?

Formula: 
$$N = N_0 \times (1 + \frac{percentage}{100})^n$$
  
 $N_0 = 590$   
 $n = 6$   
 $7 = 5.2$   
 $N = 590 \times (1 + \frac{5.2}{100})^{6}$   
 $= 590 \times 1.052^{6}$   
 $= 799.735...$   
(nearest whole number)  
After 6 years, the expected number of red squirrels is  
800.

UK retirees are migrating to holiday homes in Spain. Every year, 2.3% of UK residents move to Spain. In 2021, there are 2700 UK retirees. How many retirees will there be in 2027?

Formula:  $N = N_0 \times (1 + \frac{\text{percentage}}{100})^n$   $N_0 = 2700$  n = from 2021 to 2027 = 2027 - 2021 = 6 7 = 2.3  $N = 2700 \times (1 + \frac{2.3}{100})^6$   $= 2700 \times 1.023^6$  = 3094.69...(nearest whole number) In 2027, the expected number of UK retinees in Spain is 3095.





3. On Tuesday 30,000 people tested positive for Covid-19. The health secretary estimates the cases increases 4.7% a day. How many more people have test positive on Sunday than Tuesday?

Calculate positive cases reported on Tuesday Formula:  $N = N_0 \times (1 + \frac{\text{percentage}}{100})^n$  $N_0 = 30,000$ n = Tuesday to Sunday = 5 days 1. = 4.7  $N = 30000 \times (1 + \frac{4.7}{100})$ = 30,000 × 1.047<sup>5</sup> = 37744.58... Calculate the difference 37745 - 30000 = 7745 (nearest whole number) There were 7745 more cases. 4. In 2010, the population of trout in a fishery is 4000. In 2016, the new population is 5642. What is the population growth rate? Use the formula to rearrange to find the growth rate. Formula:  $N = N_0 \times (1 + \frac{\text{percentage}}{100})^n$  $N_0 = 4000$ l = from 2010 to 2016= 2016-2010 = 6 N = 56427. = unknown.  $5642 = 4000 \times \left(1 + \frac{1}{100}\right)^{6}$ ÷4000  $1.4105 = (1 + \frac{\gamma}{100})^{4}$  $1.058999 = 1 + \frac{\gamma}{100}$  $0.058999 = \frac{7}{100}$ 5.8999 = 7. To 3 significant figures, the growth rate is 5.90%.





### **Section B**

### Worked Example

The population of 10,000 rabbits in a field decreases by 10% each year due to food shortages. How many rabbits will there be after 4 years?

**Step 1**: Find values for  $N_0$  and t for use in the formula  $N = N_0 \times \left(1 - \frac{percentage}{100}\right)^n$ .

 $N_0 = 10,000$ t = 4

Step 2: Substitute into the formula to calculate the value of N

$$N = N_0 \times \left(1 - \frac{percentage}{100}\right)^{4}$$
$$N = 10,000 \times \left(1 - \frac{10}{100}\right)^{4}$$

 $N = 10,000 \times 0.9^4 = 6561$ 

**Step 3:** Form a conclusion.

There will be 6561 rabbits in the field after 4 years.

# Guided ExampleThe value of a gold necklace is depreciating at a rate of 0.04% a year. Currently it is<br/>worth £13,000. What will the value be after 7 years?Step 1: Find values for $N_0$ and t for use in the formula $N = N_0 \times \left(1 - \frac{percentage}{100}\right)^n$ .<br/> $N_0 = 13,000$ <br/> $\Lambda = 7$ Step 2: Substitute into the equation to calculate the value of N.N = 130000 $\times \left(1 - \frac{0.04}{100}\right)^7$ <br/> $= 13000 \times 0.4996^7$ <br/>= 12,963.64 (nearest pence)Step 3: Form a conclusion.After 7 years, the value of the Gold Necklace will<br/>be worth £12,963.64

**D O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O** 

www.pmt.education





### Now it's your turn!

If you get stuck, look back at the worked and guided examples.

5. Water in a tank is leaking at a rate of 5.5% a second. The tank is filled up with 6 *l* of water. How much water is left after 8 seconds? Give your answer in millilitres.

Formula: 
$$N = N_0 \times (1 - \frac{\text{percentage}}{100})^n$$
  
 $N_0 = 6$   
 $n = 8$   
 $7 = 5.5$   
 $N = 6 \times (1 - \frac{5.5}{100})^8$   
 $= 6 \times 0.945^8$   
in ml  $= 3.8159771$   
 $x_{1000} = 3815.977 \text{ mL}$   
To the nearest millilitre there will be 3816mL left.

6. A new car is bought for £15,000. It depreciates by 33% each year. Tim sells his car for the value after 3 years. How much did Tim lose?

Formula :  $N = N_0 \times (1 - \frac{\text{percentage}}{100})^n$ Calculate how much Tim sells:  $N_0 = 15000$  n = 3  $\gamma = 33$   $N = 15000 \times (1 - \frac{33}{100})^3$   $= 15000 \times 0.67^3 = 4511.4457$ Calculate loss: 15,000 - 4511.445 = 10,488.56 (nearest pound) Tim loses  $\pm 10, 488.56$ 

**D O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O** 





7. A bouncy ball is thrown from a height of 5 m. It bounces at a height 4.5% less than the height before. How many bounces does it take for the ball to be under 1 m of height?

| Formula: $N = N_0 \times (1 - \frac{\text{percentage}}{100})^n$                      |
|--------------------------------------------------------------------------------------|
| Use trial and error to find the number bounces.<br>No = $5$                          |
| 7 = 4.5<br>n = n                                                                     |
| After 5 bounces:                                                                     |
| $N = 5 \times (1 - \frac{4 \cdot 5}{100})^{5}$                                       |
| $= 5 \times 0.955^5 = 3.97$ (above Im)                                               |
| After 35 bounces:<br>= $5 \times 0.955^{35} = 0.997$ (below Im)<br>) check to see if |
| 34 bounces:<br>= $5 \times 0.955^{34} = 1.0449$ (above im) above im                  |
| After 35 bounces, the ball will be under Im.                                         |

8. The value of a car depreciates at the rate x %. In 2020, the value is £21,000. In 2028, the value of the car is approximately £11,255. Find the value of x.

Formula : 
$$N = N_0 \times (1 - \frac{\text{percentage}}{100})^n$$
  
Using the formula, rearrange to find x.  
 $N_0 = \frac{1}{2}21,000$   
 $N = \frac{1}{2}11,255$   
 $\frac{1}{2} = \infty$   
 $N = \text{from } 2020 \text{ to } 2028$   
 $= 2028 - 2020 = 8$   
 $11,255 = 21,000 \times (1 - \frac{\pi}{100})^8$   
 $0.53595... = (1 - \frac{\pi}{100})^8$   
 $0.9250 \dots = (1 - \frac{\pi}{100})^8$   
 $0.9250 \dots = (1 - \frac{\pi}{100})^8$   
 $7.500 \dots = \infty$   
 $\chi = 750 \text{ (3 sf.)}$ 



### Section C

### Worked Example

Hana deposits £800 in a bank that pays 4.5% compound interest a year. Work out the interest paid by the bank in 3 years.

**Step 1**: Find values for  $N_0$  and t for use in the formula  $N = N_0 \times \left(1 + \frac{percentage}{100}\right)^n$ .

 $N_0 = 800$ t = 3

Step 2: Substitute into the formula to calculate the value of N.

$$N = N_0 \times \left(1 - \frac{percentage}{100}\right)^n$$
$$N = 800 \times \left(1 + \frac{4.5}{100}\right)^3$$

 $N = 800 \times 1.045^3 = 912.9329$ 

Step 3: Form a conclusion.

There will be £912.93 in Hana's bank account after 3 years.

### **Guided Example**

Chloe loans £5500 from a bank where the cost of borrowing is 3% per year. Calculate the extra amount of compound interest Chloe pays in 6 years.

Step 1: Find values for  $N_0$  and t for use in the formula  $N = N_0 \times \left(1 + \frac{percentage}{100}\right)^n$ . N = 5500  $\Lambda = 6$ Step 2: Substitute into the formula to calculate the value of N.  $N = 5500 \times \left(1 + \frac{3}{100}\right)^6$   $= 5500 \times 1 \cdot 03^6 = 6567 \cdot 2876...$ Step 3: Calculate how much interest this is. Interest Paid = New - Original  $6567 \cdot 287... - 5500 = 1067 \cdot 287...$ Step 4: Form a conclusion. To the preamest pence, Chloe earns  $£1067 \cdot 29$  extra interest

**D O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O** 





### Now it's your turn!

If you get stuck, look back at the worked and guided examples.

9. Ethan loans £700 from a bank where the cost of borrowing is 5% per year. Calculate the extra amount of compound interest Ethan pays in 2 years.

Formula:  $N = N_0 \times (1 + \frac{percentage}{100})^n$   $N_0 = 700, n=2, 7 = 5$   $N = 700 \times (1 + \frac{5}{100})^2$   $N = 700 \times (1 + \frac{5}{100})^2$   $N = 700 \times 1.05^2$  = 71.75Ethan pays 271.75 extra interest = 771.75

10. Rhea deposits £1150 in a bank that pays 4% compound interest a year. Work out the interest paid by the bank in 3 years.

Formula:  $N = N_0 \times (1 + \frac{percentage}{100})^n$   $N_0 = 1150, n = 3, 7 = 4$  1293.5936 - 1150 = 143.5936  $N = 1150 \times (1 + \frac{10}{100})^3$   $= 1150 \times 1.04^3$  To the nearest pence, Rhea gets = 1293.5936 = 143.59 from the bank

11. Delaney loans £5800 from a bank where the cost of borrowing is 6.7% per year. Calculate the amount of compound interest Delaney pays in 10 years.

Formula:  $N = N_0 \times (1 + \frac{\text{percentage}}{100})^n$   $N_0 = 5800, n = 10, 7 = 6.7$   $N = 5800 \times (1 + \frac{6.7}{100})^n$   $= 5800 \times (.067^n)^n$  = 11093.59... To the nearest pence, Delaney pays = 11093.59... an extra 25293.59

12. Maya deposits £756 in a bank that pays 2.3% compound interest a year. Work out the interest paid by the bank in 6 years.

Formula:  $N = N_0 \times (1 + \frac{\text{percentage}}{100})^n$   $N_0 = 756, 7 = 2.3, n = 6$  866.514... -756  $N = 756 \times (1 + \frac{2.3}{100})^6$  = 110.514...  $= 756 \times 1.023^6$  To the nearest pence, Maya = 866.514... earns £110.51

**D O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O O** 

