

GCSE Maths – Number

Powers, Roots and Fractional Indices

Worksheet

NOTES

SOLUTIONS

This worksheet will show you how to work out different types of questions on powers, roots and fractional indices. Each section contains a worked example, a question with hints and then questions for you to work through on your own.

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Section A

Worked Example 1

Find 13³

Step 1: Identify the power and use the number to indicate how many multiples there are.

$$13^3 = 13 \times 13 \times 13$$

Step 2: Calculate the product.

$$13^3 = 13 \times 13 \times 13 = 2197$$

Worked Example 2

Find $\left(\frac{5}{4}\right)^{-4}$

Step 1: Due to the negative sign, flip the base.

$$\left(\frac{5}{4}\right)^{-4} = \left(\frac{4}{5}\right)^4$$

Step 2: Apply the remaining power to the numerator and denominator.

$$\left(\frac{5}{4}\right)^{-4} = \left(\frac{4}{5}\right)^4 = \frac{4^4}{5^4} = \frac{4 \times 4 \times 4 \times 4}{5 \times 5 \times 5 \times 5} = \frac{256}{625}$$

Guided Example 1

Find 21²

Step 1: Identify the power and use the number to indicate how many multiples there are.

Step 2: Calculate the product.

Guided Example 2

Find $\left(\frac{13}{3}\right)^{-2}$

Step 1: Due to the negative sign, flip the base.

Step 2: Apply the remaining power to the numerator and denominator.

If you get stuck, look back at the worked and guided examples.

- 1. Find 7³
- 2. Find 4⁴
- 3. Find 5⁶
- 4. Find $\left(\frac{3}{5}\right)^2$
- 5. Find $\left(\frac{-9}{4}\right)^3$
- 6. Find 2^{-3}
- 7. Find 0.5⁵
- 8. Find $\left(\frac{7}{11}\right)^{-4}$
- 9. Find $\left(\frac{2}{3}\right)^7$
- 10. Find $(-11)^{-4}$

Section B

Worked Example 1

Simplify $g^5 \times g^3$

Step 1: As we are multiplying, we must add the two powers together.

$$g^5 \times g^3 = g^{5+3}$$

Step 2: Simplify the addition of the two powers.

$$g^{5+3} = g^8$$

Worked Example 2

Simplify $(q^6)^{11}$

Step 1: As we are raising a power to another power, we must multiply the two powers together.

$$(q^6)^{11} = q^{6 \times 11}$$

Step 2: Simplify the multiplication of the two powers.

$$q^{6\times11} = q^{66}$$

Guided Example

Simplify $y^9 \div y^{\frac{1}{2}}$

Step 1: As we are dividing, we must subtract the second powers from the first power.

Step 2: Simplify the subtraction of the two powers.

If you get stuck, look back at the worked and guided examples.

- 11. Simplify $x \times x \times x$
- 12. Simplify $a^3 \times a^4$
- 13. Simplify $r^{40} \div r^{21}$
- 14. Simplify $e^{\frac{3}{4}} \times e^{\frac{1}{2}}$
- 15. Simplify $t^{\frac{7}{3}} \div t^2$
- 16. Simplify $(a^2)^3$
- 17. Simplify $(9b^4)^7$
- 18. Simplify $(3f^5)^{\frac{9}{10}}$
- 19. Simplify $(p^{-q})^{-r}$
- 20. Simplify $(\frac{x^{2y}}{x^y})^3$

Section C - Higher Only

Worked Example 1

Find and simplify $\sqrt{68}$

Step 1: Identify if the number in the root has any square number factors.

 $68 = 4 \times 17$ so 4 is a square number factor.

Step 2: Simplify the square root using rules of surds.

$$\sqrt{68} = \sqrt{4 \times 17} = \sqrt{4} \times \sqrt{17} = 2 \times \sqrt{17} = 2\sqrt{17}$$

Worked Example 2

Find and simplify $\sqrt[4]{625}$

Step 1: Without using a calculator, find an integer which factors into 625 exactly 4 times (the same number of times as the root).

$$625 = 5 \times 5 \times 5 \times 5 = 5^4$$

Step 2: Deduce the solution to the root expression.

$$\sqrt[4]{625} = \sqrt[4]{5^4} = \mathbf{5}$$

Guided Example 1

Find and simplify $\sqrt{126}$

Step 1: Identify if the number in the root has any square number factors.

Step 2: Simplify the square root using rules of surds.

Guided Example 2

Find and simplify $\sqrt[5]{32}$

Step 1: Without using a calculator, find an integer which factors into 32 exactly 5 times (the same number of times as the root).

Step 2: Deduce the solution to the root expression.

If you get stuck, look back at the worked and guided examples.

- 21. Find $\sqrt{81}$
- 22. Find $\sqrt{24}$
- 23. Find $\sqrt{900}$
- 24. Find $\sqrt{612}$
- 25. Find $2\sqrt{128}$
- 26. Find $13\sqrt{338}$
- 27. Find $\sqrt[3]{64}$
- 28. Find $\sqrt[4]{16}$
- 29. Find $\sqrt[3]{125}$
- 30. Find $\sqrt[5]{243}$

Section D - Higher Only

Worked Example

Find and simplify $2^{-\frac{3}{2}}$

Step 1: Due to the negative sign, flip the base.

$$2^{-\frac{3}{2}} = \left(\frac{1}{2}\right)^{\frac{3}{2}}$$

Step 2: Apply the remaining index to the numerator and denominator.

$$\left(\frac{1}{2}\right)^{\frac{3}{2}} = \frac{1^{\frac{3}{2}}}{2^{\frac{3}{2}}}$$

Step 3: Simplify the remaining powers and roots. Rationalise the denominator if necessary.

$$\frac{1^{\frac{3}{2}}}{2^{\frac{3}{2}}} = \frac{1}{\sqrt{2^3}} = \frac{1}{\sqrt{8}} = \frac{1}{\sqrt{8}} \times \frac{\sqrt{8}}{\sqrt{8}} = \frac{\sqrt{8}}{8} = \frac{\sqrt{4 \times 2}}{8} = \frac{\sqrt{4} \times \sqrt{2}}{8} = \frac{2\sqrt{2}}{8} = \frac{\sqrt{2}}{4}$$

Guided Example

Find and simplify $\left(\frac{4}{5}\right)^{\frac{1}{2}}$

Step 1: Apply the power to the numerator and denominator. As it is a fraction, we will get a root.

Step 2: Simplify the remaining powers and roots. Rationalise the denominator if necessary.

If you get stuck, look back at the worked and guided examples.

31. Find and simplify where possible $9^{\frac{1}{2}}$

32. Find and simplify where possible $12^{-\frac{3}{2}}$

33. Find and simplify where possible $\left(\frac{4}{3}\right)^{\frac{5}{2}}$

34. Find and simplify where possible $\left(\frac{27}{64}\right)^{-\frac{1}{3}}$

35. Find and simplify where possible $9^{-\frac{1}{2}}$

36. Find and simplify where possible $\left(\frac{7}{8}\right)^{-\frac{2}{3}}$

37. Find and simplify where possible $\left(\frac{16}{81}\right)^{-\frac{5}{4}}$

38. Find and simplify where possible $\left(\frac{8}{27}\right)^{-\frac{4}{3}}$

39. Find and simplify where possible $\left(\frac{9}{16}\right)^{-\frac{3}{2}}$

40. Find and simplify where possible $(32)^{-\frac{2}{5}}$

Section E – Higher Only

Worked Example

Estimate 6.5²

Step 1: Recognise that 6.5 is between two integers, 6 and 7.

6 < 6.5 < 7

Step 2: Due to this, 6.5^2 is between 6^2 and 7^2 .

 $6^2 < 6.5^2 < 7^2$

Step 3: Simplify this inequality.

 $36 < 6.5^2 < 49$

Step 3: Using this we can estimate 6.5^2 .

 $6.5^2 \simeq 40$

Guided Example

Estimate $\sqrt{14}$

Step 1: Recognise that 14 is between two square numbers, 9 and 16.

Step 2: Due to this the square root of 14 lies between the square root of 9 and the square root of 16.

Step 3: As 14 is closer to 16 than to 9, square root of 14 is close to the square root of 16.

If you get stuck, look back at the worked and guided examples.

41		Est	im	at	е	4.	34
41	•	டல	.1111	aı	C	4.	J

44. Estimate 0.823²

45. Estimate $\sqrt{39}$

46. Estimate $\sqrt{35}$

47. Estimate $\sqrt{140}$

48. Estimate $\sqrt{18.2}$

49. Estimate $\sqrt[3]{61}$

