

GCSE Maths – Number

Powers, Roots and Fractional Indices

Worksheet

WORKED SOLUTIONS

This worksheet will show you how to work out different types of questions on powers, roots and fractional indices. Each section contains a worked example, a question with hints and then questions for you to work through on your own.

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Section A

Worked Example 1

Find 13³

Step 1: Identify the power and use the number to indicate how many multiples there are.

 $13^3 = 13 \times 13 \times 13$

Step 2: Calculate the product.

 $13^3 = 13 \times 13 \times 13 = 2197$

Worked Example 2

Find $\left(\frac{5}{4}\right)^{-4}$

Step 1: Due to the negative sign, flip the base.

$$\left(\frac{5}{4}\right)^{-4} = \left(\frac{4}{5}\right)^4$$

Step 2: Apply the remaining power to the numerator and denominator.

$$\left(\frac{5}{4}\right)^{-4} = \left(\frac{4}{5}\right)^4 = \frac{4^4}{5^4} = \frac{4 \times 4 \times 4 \times 4}{5 \times 5 \times 5 \times 5} = \frac{256}{625}$$

D O

If you get stuck, look back at the worked and guided examples.

1. Find 7³ 49 <u>× 67</u> <u>343</u> 7³ = 7 × 7 × 7 = 49 × 7 ≠ 343 2. Find 4⁴ 64 × <u>,4</u> 256 4⁴ = 4 × 4 × 4 × 4 = 16 × 4 × 4 = 64 × 4 = 256 3. Find 5⁶ 5°=5×5×5×5×5×5=25×5×5×5×5=125×5×5×5= 625×5×5 : 3125 ×5 7=15625 4. Find $\left(\frac{3}{r}\right)^2$ 3125 × <u>1 55</u> \5652 $\left(\frac{3}{5}\right)^2 = \frac{3^2}{5^2} = \frac{3\times3}{5\times5} = \frac{9}{25}$ 5. Find $\left(\frac{-9}{4}\right)^3$ $\left(\frac{-9}{4}\right)^3 = \frac{(-9)^3}{4^3} = \frac{-9 \times -9 \times -9}{4 \times 4 \times 4} = \frac{-729}{64}$ 6. Find 2^{-3} $2^{-3} = \left(\frac{2}{1}\right)^{-3} = \left(\frac{1}{2}\right)^{3} = \frac{1^{3}}{2^{3}} = \frac{1}{8}$ 7. Find 0.5^{5} 7. Find 0.5^{5} $0.5^{5} = \left(\frac{1}{2}\right)^{5} = \frac{1^{5}}{2^{5}} = \frac{1}{32}$ 8. Find $\left(\frac{7}{12}\right)^{-4}$ $\left(\frac{7}{11}\right)^{-4} = \left(\frac{11}{7}\right)^{4} = \frac{11^{4}}{7^{4}} = \frac{11 \times 11 \times 11 \times 11}{7 \times 7 \times 7 \times 7} = \frac{14641}{2401}$ 9. Find $\left(\frac{2}{2}\right)^7$ flip the base to remove negative index $\left(\frac{2}{3}\right)^{7} = \frac{2^{7}}{3^{7}} = \frac{2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2}{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3} = \frac{128}{2187}$ flip the base to remove negative index 10. Find $(-11)^{-4}$ $(-11)^{-4} = \left(\frac{-11}{1}\right)^{-4} = \left(\frac{1}{-11}\right)^{4} = \frac{1^{4}}{(-11)^{4}} = \frac{1}{11^{4}} = \frac{1}{11 \times 11 \times 11 \times 11} = \frac{1}{14641}$

Section B

Worked Example 1

Simplify $g^5 \times g^3$

Step 1: As we are multiplying, we must add the two powers together.

$$g^5 \times g^3 = g^{5+3}$$

Step 2: Simplify the addition of the two powers.

 $g^{5+3} = g^8$

Worked Example 2

Simplify $(q^6)^{11}$

Step 1: As we are raising a power to another power, we must multiply the two powers together.

 $(q^6)^{11} = q^{6 \times 11}$

Step 2: Simplify the multiplication of the two powers.

 $q^{6 \times 11} = q^{66}$

Guided Example

Simplify $y^9 \div y^{\frac{1}{2}}$

Step 1: As we are dividing, we must subtract the second powers from the first power.

 $y^{9} \div y^{\frac{1}{2}} = y^{9-\frac{1}{2}}$ $x^{m} \div x^{n} = x^{m-n}$

Step 2: Simplify the subtraction of the two powers.

$$y^{q-\frac{1}{2}} = y^{\frac{18}{2}-\frac{1}{2}} = y^{\frac{17}{2}}$$

▶ Image: Contraction PMTEducation

If you get stuck, look back at the worked and guided examples.

11. Simplify $x \times x \times x$ RULES OF INDICES $\mathcal{X} \times \mathcal{X} \times \mathcal{X} = \mathcal{X}^{1+1+1} = \mathcal{X}^3$ 12. Simplify $a^3 \times a^4$ $T_{\mathcal{X}} \times \mathcal{X}_{\mathcal{Y}} = \mathcal{X}_{\mathcal{Y}} + u$ $a^{3} \times a^{4} = a^{3+4} = a^{3}$ $(\mathbf{x}^{m} \div \mathbf{x}^{n} = \mathbf{x}^{m-n}$ $(\mathfrak{X}^m)^n = \mathfrak{X}^{m \times n}$ 13. Simplify $r^{40} \div r^{21}$ $(4) \chi^{-n} = \frac{1}{r^n}$ $\Gamma^{40} \div \Gamma^{21} = \Gamma^{40-21} = \Gamma^{19}$ (5) $\chi^{\frac{1}{m}} = m [\chi^{n}]$ 14. Simplify $e^{\frac{3}{4}} \times e^{\frac{1}{2}}$ $e^{\frac{3}{4}} \times e^{\frac{1}{2}} = e^{\frac{3}{4} + \frac{1}{2}} = e^{\frac{3}{4} + \frac{2}{4}} = e^{\frac{5}{4}}$ 15. Simplify $t^{\frac{7}{3}} \div t^2$ $t^{\frac{3}{3}} \div t^{2} = t^{\frac{3}{3}-2} = t^{\frac{3}{3}-\frac{6}{3}} = t^{\frac{1}{3}}$ 16. Simplify $(a^2)^3$ $\left(\Omega^{2}\right)^{3} = \Omega^{2\times3} = \Omega^{6}$ 17. Simplify $(9b^4)^7$ $(9b^{4})^{7} = 9^{7}b^{4x^{7}} = 4782969b^{28}$ 18. Simplify $(3f^5)^{\frac{9}{10}}$ $(3f^{5})^{\frac{9}{10}} = 3^{\frac{9}{10}}(f^{5})^{\frac{9}{10}} = 3^{\frac{9}{10}}f^{5\times\frac{9}{10}} = 10\sqrt{3^{9}}f^{\frac{45}{10}} = 10\sqrt{19683}f^{\frac{2}{2}}$ 19. Simplify $(p^{-q})^{-r}$ $(p-q)^{-r} = p^{-q} \times r^{-r} = p^{qr}$ 20. Simplify $\left(\frac{x^{2y}}{x^{y}}\right)^{3}$ $\left(\frac{\chi^{2y}}{\chi^{y}}\right)^{3} = \frac{(\chi^{2y})^{3}}{(\chi^{y})^{3}} = \frac{\chi^{2y\times3}}{\chi^{y\times3}} = \frac{\chi^{6y}}{\chi^{3y}} = \chi^{6y} \div \chi^{3y} = \chi^{6y-3y} = \chi^{3y}$

Section C – Higher Only

Worked Example 1

Find and simplify $\sqrt{68}$

Step 1: Identify if the number in the root has any square number factors.

 $68 = 4 \times 17$ so 4 is a square number factor.

Step 2: Simplify the square root using rules of surds.

 $\sqrt{68} = \sqrt{4 \times 17} = \sqrt{4} \times \sqrt{17} = 2 \times \sqrt{17} = 2\sqrt{17}$

Worked Example 2

Find and simplify $\sqrt[4]{625}$

Step 1: Without using a calculator, find an integer which factors into 625 exactly 4 times (the same number of times as the root).

 $625 = 5 \times 5 \times 5 \times 5 = 5^4$

Step 2: Deduce the solution to the root expression.

 $\sqrt[4]{625} = \sqrt[4]{5^4} = 5$

Guided Example 1

Find and simplify $\sqrt{126}$

Step 1: Identify if the number in the root has any square number factors.

126 = 9 × 14 so 9 is a square number factor.

Step 2: Simplify the square root using rules of surds.

 $\sqrt{126} = \sqrt{9 \times 14} = \sqrt{9} \times \sqrt{14} = 3\sqrt{14}$ rules of surds

Guided Example 2

Find and simplify $\sqrt[5]{32}$

Step 1: Without using a calculator, find an integer which factors into 32 exactly 5 times (the same number of times as the root).

 $32 = 2 \times 2 \times 2 \times 2 \times 2 = 2^{5}$

D O

Step 2: Deduce the solution to the root expression.

 $5\sqrt{32} = 5\sqrt{2^5} = 2$

Now it's your turn! If you get stuck, look back at the worked and guided examples.

21. Find $\sqrt{81}$ 81=9 × 9 so 81 has two square number factors of 9. Alternative method: $81 = 9 \times 9 = 9^2$ $\sqrt{81} = \sqrt{9 \times 9} = \sqrt{9} \times \sqrt{9} = 3 \times 3 = 9$ 181 = 192 = 9 Find $\sqrt{24}$ 24 = 6 × 4 so 4 is a square number factor. 22. Find $\sqrt{24}$ $\sqrt{24} = \sqrt{6\times4} = \sqrt{6} \times \sqrt{4} = \sqrt{6} \times 2 = 2\sqrt{6}$ $10^2 = 100$ 23. Find $\sqrt{900}$ 900 = 100 × 9 so 100 is a square number factor. Alternative method: $900 = 30 \times 30 = 30^2$ $\sqrt{900} = \sqrt{100} \times 9 = \sqrt{100} \times 19 = 10 \times 3 = 30$ $\sqrt{900} = \sqrt{30^2} = 30$ 24. Find $\sqrt{612}$ 612 = 36×17 so 36 is a square number factor. 1612 = 136×17 = 136 × 117 = 6×177 = 6177 25. Find $2\sqrt{128}$ 128=64 ×2 so 64 is a square number factor. $\sqrt{128} = \sqrt{64 \times 2} = \sqrt{64} \times \sqrt{2} = 8 \times \sqrt{2} = 8\sqrt{2}$ $2\sqrt{128} = 2(8\sqrt{2}) = 16\sqrt{2}$ 169 = 13² ہے 26. Find $13\sqrt{338}$ so 169 is a square number factor. 338 = 169 × 2 J338 = JI69×2 = JI69 × J2 = 13 × J2 = 13 J2 13 J338 = 13(13 J2) = 169 J2 27. Find $\sqrt[3]{64}$ $64 = 16 \times 4 = 4 \times 4 \times 4 = 4^{3}$ $\sqrt[3]{64} = \sqrt[3]{4^3} = \frac{4}{4}$ 28. Find ⁴√16 16=4×4=2×2×2×2×2=24 4/16 = 4/24 = 2 29. Find $\sqrt[3]{125}$ $125 = 25 \times 5 = 5 \times 5 \times 5 = 5^3$ ³√125 = ³√5³ = 5 30. Find $\sqrt[5]{243}$ 243 = 81×3 = 9×9×3= 3×3×3×3×3=35 $\sqrt[5]{243} = \sqrt[5]{3^5} = 3$

Section D – Higher Only

Worked Example

Find and simplify $2^{-\frac{3}{2}}$

Step 1: Due to the negative sign, flip the base.

$$2^{-\frac{3}{2}} = \left(\frac{1}{2}\right)^{\frac{3}{2}}$$

Step 2: Apply the remaining index to the numerator and denominator.

$$\left(\frac{1}{2}\right)^{\frac{3}{2}} = \frac{1^{\frac{3}{2}}}{2^{\frac{3}{2}}}$$

Step 3: Simplify the remaining powers and roots. Rationalise the denominator if necessary.

$$\frac{1^{\frac{3}{2}}}{2^{\frac{3}{2}}} = \frac{1}{\sqrt{2^3}} = \frac{1}{\sqrt{8}} = \frac{1}{\sqrt{8}} \times \frac{\sqrt{8}}{\sqrt{8}} = \frac{\sqrt{8}}{8} = \frac{\sqrt{4 \times 2}}{8} = \frac{\sqrt{4} \times \sqrt{2}}{8} = \frac{2\sqrt{2}}{8} = \frac{\sqrt{2}}{4}$$

Guided Example

Find and simplify $\left(\frac{4}{5}\right)^{\frac{1}{2}}$ Step 1: Apply the power to the numerator and denominator. As it is a fraction, we will get a root. $\left(\frac{4}{5}\right)^{\frac{1}{2}} = -\frac{4^{\frac{1}{2}}}{5^{\frac{1}{2}}} = -\frac{5^{\frac{1}{2}}}{5^{\frac{1}{2}}} = -\frac{5^{\frac{1}{2}}}{5^{\frac{1}{2}}}$ Step 2: Simplify the remaining powers and roots. Rationalise the denominator if necessary. $\frac{5^{\frac{1}{2}}}{5^{\frac{1}{2}}} = -\frac{2}{5^{\frac{1}{2}}} = -\frac{$

D O

If you get stuck, look back at the worked and guided examples.

31. Find and simplify where possible $9^{\frac{1}{2}}$

 $9^{\frac{1}{2}} = \sqrt{9} = 3$

32. Find and simplify where possible $12^{-\frac{3}{2}}$ $12^{-\frac{3}{2}} = \left(\frac{12}{12}\right)^{-\frac{3}{2}} = \left(\frac{1}{12}\right)^{\frac{3}{2}} = \frac{1^{\frac{3}{2}}}{12^{\frac{3}{2}}} = \frac{\sqrt{1^{\frac{3}{2}}}}{\sqrt{123}} = \frac{1}{\sqrt{1328}} = \frac{1}{\sqrt{1328}} \times \frac{\sqrt{1328}}{\sqrt{1328}} = \frac{\sqrt{1328}}{\sqrt{13$ $= \frac{\sqrt{576 \times 3}}{1728} = \frac{\sqrt{576} \times \sqrt{3}}{1728} = \frac{\sqrt{24^2} \times \sqrt{3}}{1728} = \frac{24\sqrt{3}}{1728} = \frac{\sqrt{3}}{72}$ divide numerator and denominator by 24 33. Find and simplify where possible $\left(\frac{4}{2}\right)^{\frac{5}{2}}$ RATIONALISE THE DENOMINATOR $\left(\frac{4}{3}\right)^{\frac{5}{2}} = \frac{4^{\frac{5}{2}}}{3^{\frac{5}{2}}} = \frac{\sqrt{4^{5}}}{\sqrt{3^{5}}} = \frac{(\sqrt{4})^{5}}{\sqrt{3^{5}}} = \frac{2^{5}}{\sqrt{3^{5}}} = \frac{2 \times 2 \times 2 \times 2 \times 2}{\sqrt{3 \times 3 \times 3 \times 3}} = \frac{32}{\sqrt{243}} = \frac{32}{\sqrt{243}} \times \frac{\sqrt{243}}{\sqrt{243}} = \frac{\sqrt{243}}{\sqrt{243}} \times \frac{\sqrt{243}}{\sqrt{243}} = \frac{\sqrt{2}}{\sqrt{243}} \times \frac{\sqrt{2}}{\sqrt{243}} = \frac{\sqrt{2}}{\sqrt{243}} \times \frac{\sqrt{2}}{\sqrt{243}} \times \frac{\sqrt{2}}{\sqrt{243}} = \frac{\sqrt{2}}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{$ $\frac{32\sqrt{243}}{243} = \frac{32\sqrt{81\times3}}{243} = \frac{32(\sqrt{81}\times\sqrt{3})}{243} = \frac{32(9\times\sqrt{3})}{243} = \frac{32(9\sqrt{3})}{243} = \frac{288\sqrt{3}}{243} = \frac{32\sqrt{3}}{243}$ = 34. Find and simplify where possible $\left(\frac{27}{64}\right)^{-\frac{1}{3}}$ divide numerator and denominator $\left(\frac{27}{64}\right)^{-\frac{1}{3}} = \left(\frac{64}{27}\right)^{\frac{1}{3}} = \frac{\sqrt[3]{64}}{\sqrt[3]{77}} = \frac{\sqrt[3]{4^3}}{\sqrt[3]{7^3}} = \frac{4}{3}$ Flip the base to remove negative index 35. Find and simplify where possible $9^{-\frac{1}{2}}$ $q^{-\frac{1}{2}} = \left(\frac{q}{1}\right)^{-\frac{1}{2}} = \left(\frac{1}{q}\right)^{\frac{1}{2}} = \frac{1^{\frac{1}{2}}}{q^{\frac{1}{2}}} = \frac{1}{\sqrt{q}} = \frac{1}{3}$ Flip the base negative index

D O

 $\left(32\right)^{-\frac{2}{5}} = \left(\frac{32}{1}\right)^{-\frac{2}{5}} = \left(\frac{1}{32}\right)^{\frac{2}{5}} = \frac{1^{\frac{2}{5}}}{32^{\frac{2}{5}}} = \frac{5\sqrt{1^2}}{5\sqrt{32^2}} = \frac{1}{\left(\sqrt[5]{32}\right)^2} = \frac{1}{\left(\sqrt[5]{32}\right)^2} = \frac{1}{2^2} = \frac{1}{4}$ Flip the base to remove You can apply the power and root in whichever order is simplest negative index > Here, it makes sense to apply the root first so we are handling smaller humbers

D O

(and we know the 5th root of 32)

@€®€

Section E – Higher Only

Worked Example

Estimate 6. 5²

Step 1: Recognise that 6.5 is between two integers, 6 and 7.

6 < 6.5 < 7

Step 2: Due to this, 6.5^2 is between 6^2 and 7^2 .

$$6^2 < 6.5^2 < 7^2$$

Step 3: Simplify this inequality.

$$36 < 6.5^2 < 49$$

Step 3: Using this we can estimate 6.5^2 .

 $6.5^2\simeq 40$

Guided Example

Estimate $\sqrt{14}$ Step 1: Recognise that 14 is between two square numbers, 9 and 16. 9 6 14 6 16 Step 2: Due to this the square root of 14 lies between the square root of 9 and the square root of 16. J9 6 J14 6 J16 Step 3: As 14 is closer to 16 than to 9, square root of 14 is close to the square root of 16. J9 L J14 L J16 3 < 514 < 4 closer to J16 than J9, J14 is closer to 4 than since J14 ons like this a range will be allowed - as w select a value in the J14 ≈ 3.7 For questions of answers will long as you se correct region 3.50 estimate

D O

If you get stuck, look back at the worked and guided examples.

```
For questions like the following,
a range of answers would be
allowed. You just need to make
41. Estimate 4.3<sup>2</sup>
     4 < 4.3 < 5
                                                                                   sure you're choosing a value in the
    4^{2} < 4.3^{2} < 5^{2}
                                                                                   correct region.
    16 < 4.3<sup>2</sup> < 25
    4.3 is closer to 4 than 5 so 4.3^2 is closer to 16 than 25.
So, we estimate (4.3^2 \approx 19)
42. Estimate 1.4<sup>3</sup>
     141.442
     13 < 1.43 < 23
     1 < 1.43 < 8
    1.4 is closer to 1 than 2 so 1.43 is closer to 1 than to 8.
So, we estimate 1.4^3 \approx 3
43. Estimate 2.1<sup>5</sup>
     2 < 2.1 < 3
     25 < 2.15 < 35
    32<2.15<243
    2.1 is closer to 2 than 3 so 2 \cdot l^2 will be closer to 32 than 243.
    So, we estimate 2.1^5 \approx 40
44. Estimate 0.823<sup>2</sup>
      060.82361
     02 4 0.82 32 4 12
     0 < 0.8232 < 1
   0.823 is closer to 1 than 0 so 0.8232 is closer to 1 than 0.
   50, we estimate 0.823<sup>2</sup> ≈ 0.7
45. Estimate \sqrt{39}

    Sandwich the required
value between known
square numbers.

   36 < 39 < 49 4
   136 < 139 < 149
     6 < 139 < 7
  39 is closer to 36 so \sqrt{39} is closer to 6 than 7.
 So, we estimate J39 \approx 6.2
46. Estimate \sqrt{35}
 25 < 35 < 36
125 < 135 < 136
   5 < 55 < 6
35 is closer to 36 than 25 so J35 is closer to 6 than 5.
so, we estimate \sqrt{35} \approx 5.9
47. Estimate \sqrt{140}
                                         Alternative method: \sqrt{140} = 2\sqrt{35}
     121 2140 2144
                                             From Q46, \sqrt{35} \approx 5.9.
    JIZI 4 JI40 4 JI44
                                              50 \sqrt{140} = 2\sqrt{35} \approx 2 \times 5.9 = 11.8
      11 < 5140 < 12
 140 is closer to 144 than 121 so J144 is closer to 12 than 11.
 so, we estimate √140 ≈ 11.8
48. Estimate \sqrt{18.2}
     16 < 18.2 < 25
    \sqrt{16} < \sqrt{18.2} < \sqrt{25}
      4 < 518.2 < 5
  18.2 is closer to 16 than 25 so \sqrt{18.2} is closer to 4 than 5.
  So, we estimate J18.2 = 4.3
49. Estimate \sqrt[3]{61}
                                        Here we sandwich the
required value between
cube numbers due to the
cube root.
  27 4 61 4 64 🔶
 3/27 <3/61 < 3/64
    3 < 361 < 4
                            64 than 27 so 3/61_
                                                                   is closer to 4 than 3.
 6) is closer to 64 than
so, we estimate 361 \approx 3.9
                                                                 0
                                                                          D
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
```