GCSE Maths – Geometry and Measures

Geometric Arguments and Proof (Higher)

Worksheet

This worksheet will show you how to work out different types of geometric arguments and proof questions. Each section contains a worked example, a question with hints and then questions for you to work through on your own.

Section A

Now it's your turn! If you get stuck, look back at the worked and guided examples.

1. Two triangles AMB and DMC are congruent. M is the midpoint of $\overrightarrow{\text{BC}}$ and $\overrightarrow{\text{DA}}$. $\overrightarrow{\text{MA}}$ = 3a and $\overrightarrow{\text{MC}} = 3b$. Prove that $\overrightarrow{\text{AB}}$ and $\overrightarrow{\text{CD}}$ are parallel.

2. ABCD is a parallelogram.

 $\overrightarrow{AB} = 8a$ and $\overrightarrow{BC} = 3b$.

 $\overrightarrow{\text{CE}}$ is an extension of $\overrightarrow{\text{BC}}$ such that $\overrightarrow{\text{BC}} = \overrightarrow{\text{CE}}$.

M splits \overrightarrow{AC} such that $\overrightarrow{AM} : \overrightarrow{MC} = 3 : 1$ and N splits \overrightarrow{DE} such that $\overrightarrow{DN} : \overrightarrow{NE} = 3 : 1$. Prove that \overrightarrow{AD} and \overrightarrow{MN} are parallel.

3. OBDF is a trapezium.

 $\overrightarrow{BC} = \mathbf{a}, \overrightarrow{OB} = 2\mathbf{b}$ and $\overrightarrow{OE} = 3\mathbf{a}$. C is the midpoint of \overrightarrow{BD} and E is the midpoint of \overrightarrow{OF} . M is the midpoint of \overrightarrow{CE} and N is the midpoint of \overrightarrow{DF} .

a) Find the vector \overrightarrow{CE} in terms of **a** and **b**.

b) Find the vector \overrightarrow{DF} in terms of **a** and **b**.

c) Prove that $\overrightarrow{\text{MN}}$ is parallel to $\overrightarrow{\text{OF}}$.

Section B

Worked Example

The shape ABCD is a parallelogram. \overrightarrow{AB} is represented by the vector a and \overrightarrow{AD} is represented by the vector b. M is the midpoint of \overrightarrow{BC} and N is a point on \overrightarrow{AC} such that $\overrightarrow{AN} : \overrightarrow{NC} = 2 : 1$. Prove that the points B, N and M lie on a straight line.

Step 1: Find simplified expressions for the vectors \overrightarrow{AN} , \overrightarrow{AM} , \overrightarrow{BN} and \overrightarrow{BM} . To prove that B, N and M are on a straight line, you must show through a series of logical steps that their vectors are multiples of each other.

 $\overrightarrow{AB} = \overrightarrow{DC}$ and $\overrightarrow{AD} = \overrightarrow{BC}$ because the shape is a parallelogram.

Therefore, $\overrightarrow{DC} = a$ and $\overrightarrow{BC} = b$.

N is $\frac{2}{3}$ of the way along \overrightarrow{AC} , so:

 $\overrightarrow{AN} = \frac{2}{3}\overrightarrow{AC}$ $\overrightarrow{AC} = \mathbf{a} + \mathbf{b}$ $\overrightarrow{AN} = \frac{2}{3}(\mathbf{a} + \mathbf{b}) = \frac{2}{3}\mathbf{a} + \frac{2}{3}\mathbf{b}$

M is halfway along \overrightarrow{DC} so:

$$\overrightarrow{DM} = \frac{1}{2}a$$

$$\overrightarrow{BN} = -\overrightarrow{AB} + \overrightarrow{AN} = -\mathbf{a} + \frac{2}{3}\mathbf{a} + \frac{2}{3}\mathbf{b} = -\frac{1}{3}\mathbf{a} + \frac{2}{3}\mathbf{b}$$
$$\overrightarrow{BM} = -\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{DM} = -\mathbf{a} + \mathbf{b} + \frac{1}{2}\mathbf{a} = -\frac{1}{2}\mathbf{a} + \mathbf{b}$$

Step 2: To prove that the points lie on a straight line, show that \overrightarrow{BM} is a multiple of \overrightarrow{BN} .

$$\frac{3}{2}\overrightarrow{BN} = \frac{3}{2}\left(-\frac{1}{3}\boldsymbol{a} + \frac{2}{3}\boldsymbol{b}\right) = -\frac{1}{2}\boldsymbol{a} + \boldsymbol{b} = \overrightarrow{BM}$$

Step 3: Conclude your proof.

Since $\overrightarrow{BM} = \frac{3}{2}\overrightarrow{BN}$, \overrightarrow{BM} and \overrightarrow{BN} are parallel. They also share a common point B so the points B, N and M lie on a straight line.

Now it's your turn!

If you get stuck, look back at the worked and guided examples.

4. ABCDEF is a regular hexagon with centre O.

 $\overrightarrow{\text{OE}} = a \text{ and } \overrightarrow{\text{OD}} = b$

The point X lies on an extension of ED, such that $\overrightarrow{\text{EX}} : \overrightarrow{\text{DX}} = 2 : 1$. $\overrightarrow{\text{EX}} = -2a + 2b$

G is the midpoint of CD.

- a) Draw the vector $\overrightarrow{A0}$ and label it in terms of **a** and **b**.
- b) Label all 6 sides of the hexagon in terms of **a** and **b**.
- c) Find the vector \overrightarrow{DG} in terms of **a** and **b**.
- d) Find the vector $\overrightarrow{\text{DX}}$ in terms of a and b

e) Hence, prove that O, G and X lie on a straight line.

5. The triangle AOC lies on a straight line OB.

$$\overrightarrow{\text{OC}} = 5a \text{ and } \overrightarrow{\text{OA}} = 3b$$

D is the point such that $\overrightarrow{OD} : \overrightarrow{DC} = 4 : 1$ M is the midpoint of \overrightarrow{AC} B is the point such that $\overrightarrow{OA} : \overrightarrow{AB} = 3 : 1$

Show that D, M and B lie on the same straight line.

6. ABCD is a parallelogram.

 $\overrightarrow{DA} = 12\mathbf{a} + 20\mathbf{b}$ and $\overrightarrow{DC} = 8\mathbf{a} + 4\mathbf{b}$. X lies on the line \overrightarrow{AB} such that $\overrightarrow{AX} : \overrightarrow{XB} = 1 : 3$ M is the midpoint of \overrightarrow{DB} \overrightarrow{CE} is an extension of \overrightarrow{BC} Y lies on the line \overrightarrow{CE} such that $\overrightarrow{CY} = -\frac{1}{2}\overrightarrow{DA}$.

Prove that X, M and Y are collinear.

