

GCSE Maths – Geometry and Measures

Geometric Arguments and Proof (Higher)

Worksheet

WORKED SOLUTIONS

This worksheet will show you how to work out different types of geometric arguments and proof questions. Each section contains a worked example, a question with hints and then questions for you to work through on your own.

This work by <u>PMT Education</u> is licensed under <u>CC BY-NC-ND 4.0</u>

Section A

Network www.pmt.education

Now it's your turn!

If you get stuck, look back at the worked and guided examples.

1. Two triangles AMB and DMC are congruent. M is the midpoint of \overrightarrow{BC} and \overrightarrow{DA} . $\overrightarrow{MA} = 3a$ and $\overrightarrow{MC} = 3b$. Prove that \overrightarrow{AB} and \overrightarrow{CD} are parallel.

www.pmt.education

2. ABCD is a parallelogram.

 $\overrightarrow{AB} = 8a$ and $\overrightarrow{BC} = 3b$.

 $\overrightarrow{\text{CE}}$ is an extension of $\overrightarrow{\text{BC}}$ such that $\overrightarrow{\text{BC}} = \overrightarrow{\text{CE}}$.

M splits \overrightarrow{AC} such that $\overrightarrow{AM} : \overrightarrow{MC} = 3 : 1$ and N splits \overrightarrow{DE} such that $\overrightarrow{DN} : \overrightarrow{NE} = 3 : 1$. Prove that \overrightarrow{AD} and \overrightarrow{MN} are parallel.

 $\overrightarrow{AD} = \overrightarrow{BC}$ because it is a parallelogram. Hence, $\overrightarrow{AD} = 3b$

To find MN, we need vectors of MC, CE and EN.

$$\vec{MN} = \vec{MC} + \vec{CE} + \vec{EN}$$

$$= \frac{1}{4} (\vec{AC}) + 3b + \frac{1}{4} (\vec{ED})$$

$$= \frac{1}{4} (\vec{AB} + \vec{BC}) + 3b + \frac{1}{4} (\vec{EC} + \vec{CD})$$

$$= \frac{1}{4} (\vec{8a} + 3b) + 3b + \frac{1}{4} (-3b + (-8a))$$

$$= \frac{1}{4} (\vec{8a} + 3b) + 3b + \frac{1}{4} (-3b - 8a)$$

$$= 2a + \frac{3}{4}b + 3b - \frac{3}{4}b - 2a$$

$$\vec{MN} = 3b$$

 $\overrightarrow{MN} = 3b$ $\overrightarrow{AD} = 3b$

Thi	s means $\overrightarrow{MN} = \overrightarrow{AD}$.
We	have proven that
->	
MN	shares a common
mul	tiple of 1 with vector
->	
AD	. This means that
\rightarrow	
MN	is parallel to AD

 \odot

S www.pmt.education

▶ Image: Second Second

3. OBDF is a trapezium.

 $\overrightarrow{\mathrm{BC}} = \mathbf{a}, \, \overrightarrow{\mathrm{OB}} = 2\mathbf{b} \text{ and } \overrightarrow{\mathrm{OE}} = 3\mathbf{a}.$

C is the midpoint of $\overrightarrow{\text{BD}}$ and E is the midpoint of $\overrightarrow{\text{OF}}.$

M is the midpoint of $\overrightarrow{\text{CE}}$ and N is the midpoint of $\overrightarrow{\text{DF}}$.

$$\vec{CE} = \vec{CB} + \vec{B0} + \vec{OE}$$

= (-a)+(-2b) + 3a
 $\vec{v} - a - 2b + 3a$
= 2a - 2b

b) Find the vector \overrightarrow{DF} in terms of **a** and **b**.

 $\overrightarrow{DF} = \overrightarrow{DB} + \overrightarrow{B0} + \overrightarrow{OF}$ = (-2a) + (-2b) + (6a) = -2a - 2b + 6a = 4a - 2b

c) Prove that $\overrightarrow{\text{MN}}$ is parallel to $\overrightarrow{\text{OF}}$.

$$\overrightarrow{OF} = 3a + 3a \qquad \overrightarrow{MN} = \overrightarrow{Mc} + \overrightarrow{CO} + \overrightarrow{DN}$$

$$= 6a \qquad = \overrightarrow{EC} + a + \overrightarrow{DF} = 2$$

$$\overrightarrow{MN} = -(2a-2b) + a + 4a-2b = 2a$$

$$= -a + b + a + 2a - b$$

$$= 2a$$

$$MN = \frac{1}{3} (\overline{OF})$$

We have proven that
$$MN \text{ is } \frac{1}{3} \text{ of the vector}$$

$$\overline{OF} \cdot \text{ This proves that}$$

$$MN \text{ is } parallel to OF.$$

▶ Image: Second Second

Section B

Worked Example

The shape ABCD is a parallelogram. \overrightarrow{AB} is represented by the vector a and \overrightarrow{AD} is represented by the vector b. M is the midpoint of \overrightarrow{BC} and N is a point on \overrightarrow{AC} such that \overrightarrow{AN} : $\overrightarrow{NC} = 2 : 1$. Prove that the points B, N and M lie on a straight line.

Step 1: Find simplified expressions for the vectors \overrightarrow{AN} , \overrightarrow{AM} , \overrightarrow{BN} and \overrightarrow{BM} . To prove that B, N and M are on a straight line, you must show through a series of logical steps that their vectors are multiples of each other.

 $\overrightarrow{AB} = \overrightarrow{DC}$ and $\overrightarrow{AD} = \overrightarrow{BC}$ because the shape is a parallelogram.

Therefore, $\overrightarrow{DC} = a$ and $\overrightarrow{BC} = b$.

N is $\frac{2}{3}$ of the way along \overrightarrow{AC} , so:

 $\overrightarrow{AN} = \frac{2}{3}\overrightarrow{AC}$ $\overrightarrow{AC} = \mathbf{a} + \mathbf{b}$ $\overrightarrow{AN} = \frac{2}{3}(\mathbf{a} + \mathbf{b}) = \frac{2}{3}\mathbf{a} + \frac{2}{3}\mathbf{b}$

M is halfway along \overrightarrow{DC} so:

$$\overrightarrow{DM} = \frac{1}{2}a$$

$$\overrightarrow{BN} = -\overrightarrow{AB} + \overrightarrow{AN} = -\mathbf{a} + \frac{2}{3}\mathbf{a} + \frac{2}{3}\mathbf{b} = -\frac{1}{3}\mathbf{a} + \frac{2}{3}\mathbf{b}$$
$$\overrightarrow{BM} = -\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{DM} = -\mathbf{a} + \mathbf{b} + \frac{1}{2}\mathbf{a} = -\frac{1}{2}\mathbf{a} + \mathbf{b}$$

Step 2: To prove that the points lie on a straight line, show that \overline{BM} is a multiple of \overline{BN} .

$$\frac{3}{2}\overrightarrow{BN} = \frac{3}{2}\left(-\frac{1}{3}\boldsymbol{a} + \frac{2}{3}\boldsymbol{b}\right) = -\frac{1}{2}\boldsymbol{a} + \boldsymbol{b} = \overrightarrow{BM}$$

Step 3: Conclude your proof.

Since $\overrightarrow{BM} = \frac{3}{2}\overrightarrow{BN}$, \overrightarrow{BM} and \overrightarrow{BN} are parallel. They also share a common point B so the points B, N and M lie on a straight line.

www.pmt.education

 \odot

Now it's your turn!

If you get stuck, look back at the worked and guided examples.

4. ABCDEF is a regular hexagon with centre O.

 $\overrightarrow{\text{OE}} = a$ and $\overrightarrow{\text{OD}} = b$

The point X lies on an extension of ED, such that $\overrightarrow{EX} : \overrightarrow{DX} = 2 : 1$. $\overrightarrow{\text{EX}} = -2a + 2b$

G is the midpoint of CD.

a) Draw the vector $\overrightarrow{A0}$ and label it in terms of a and b.

 $\overrightarrow{A0} = \overrightarrow{b} \rightarrow 0$ is the midpoint between $\overrightarrow{A0} \cdot \overrightarrow{S0} = \overrightarrow{A0}$

b) Label all 6 sides of the hexagon in terms of a and b.

c) Find the vector \overrightarrow{DG} in terms of **a** and **b**.

D is the midpoint of \overrightarrow{DC} . $\overrightarrow{DG} = \frac{1}{2}$ (-a) $\overrightarrow{DG} = \frac{1}{2} (\overrightarrow{DC})$

d) Find the vector \overrightarrow{DX} in terms of **a** and **b**

$$\vec{E} \vec{x} = -2\alpha + 2b$$

$$\vec{D} \vec{x} = \frac{1}{2} \vec{E} \vec{x}$$

$$= \frac{1}{2} (-2\alpha + 2b)$$

e) Hence, prove that O, G and X lie on a straight line.

 $\overrightarrow{OG} = \overrightarrow{OD} + \overrightarrow{DG} \qquad \overrightarrow{GX} = \overrightarrow{GD} + \overrightarrow{DX} \qquad \overrightarrow{OX} = \overrightarrow{OD} + \overrightarrow{DX} \qquad \text{The lines } \overrightarrow{OX}, \overrightarrow{OG} \text{ and } \overrightarrow{GX}$ $= \overrightarrow{b} - \overrightarrow{q} \qquad = \overrightarrow{q} + (-a+b) \qquad = \overrightarrow{b} + (-a+b) \qquad \text{are parallel as they are}$ $= 2b - a \qquad \text{multiple of each other}.$ $= -\frac{9}{1} + 6$

 $\vec{O} \vec{X} = 2 \vec{O} \vec{G} = 2 \vec{G} \vec{X}$

 $= -\frac{\alpha}{2}$

www.pmt.education

5. The triangle AOC lies on a straight line OB.

 $\overrightarrow{\text{OC}} = 5a \text{ and } \overrightarrow{\text{OA}} = 3b$

D is the point such that $\overrightarrow{OD} : \overrightarrow{DC} = 4 : 1$ M is the midpoint of \overrightarrow{AC} B is the point such that $\overrightarrow{OA} : \overrightarrow{AB} = 3 : 1$

Show that D, M and B lie on the same straight line.

www.pmt.education

6. ABCD is a parallelogram.

 $\overrightarrow{DA} = 12\mathbf{a} + 20\mathbf{b}$ and $\overrightarrow{DC} = 8\mathbf{a} + 4\mathbf{b}$. X lies on the line \overrightarrow{AB} such that $\overrightarrow{AX} : \overrightarrow{XB} = 1 : 3$ M is the midpoint of \overrightarrow{DB} \overrightarrow{CE} is an extension of \overrightarrow{BC} Y lies on the line \overrightarrow{CE} such that $\overrightarrow{CY} = -\frac{1}{2}\overrightarrow{DA}$.

Prove that X, M and Y are collinear.

