GCSE Maths - Geometry and Measures

Arc Length and Area of Sector

Worksheet

NOTES

SOLUTIONS

This worksheet will show you how to work out different types of arc length and sector area questions. Each section contains a worked example, a question with hints and then questions for you to work through on your own.

Section A

Worked Example

Calculate the major arc length of PQ to 1 decimal place.
Step 1: Work out numerical values for r and θ.

$$
r=4 \mathrm{~cm}
$$

For the major arc length, we use the angle that is greater than 180°.
Angles around a point add up to 360° :

$$
\begin{gathered}
\theta=360^{\circ}-72^{\circ} \\
\theta=288^{\circ}
\end{gathered}
$$

Step 2: Substitute the values into the equation.

$$
\begin{gathered}
\text { Arc Length }=2 \pi r \times \frac{\theta}{360} \\
\text { Arc Length }=2 \pi(4) \times \frac{288}{360}
\end{gathered}
$$

Step 3: Calculate the numerical value of the arc length and round the answer to the required degree of accuracy.

$$
\begin{gathered}
\text { Arc Length }=\left[2(4) \times \frac{288}{360}\right] \pi \\
\text { Arc Length }=6.4 \pi \\
\text { Arc Length }=20.106 \ldots \mathrm{~cm}
\end{gathered}
$$

The major arc length $P Q$ is 20.1 cm to 1 decimal place.

Calculate the minor arc length of $P Q$ to 1 decimal place.

Step 1: Work out numerical values for r and θ.

Step 2: Substitute values into the equation.

Step 3: Calculate the numerical value of the arc length and round the answer to the required degree of accuracy.

Now it's your turn!
If you get stuck, look back at the worked and guided examples.

1. Calculate the minor arc length to 1 decimal place

2. Calculate the major arc length to 1 decimal place.

3. Calculate the minor arc length to 1 decimal place.

4. Calculate the major arc length to 1 decimal place.

Section B

Worked Example

Calculate the area of the major sector to 1 decimal place.

Step 1: Work out numerical values for r and θ.

$$
r=4 \mathrm{~cm}
$$

For the major sector, we use the angle that is greater than 180°.

$$
\begin{gathered}
\theta=360^{\circ}-72^{\circ} \\
\theta=288^{\circ}
\end{gathered}
$$

Step 2: Substitute values into the equation.

$$
\begin{gathered}
\text { Area }=\pi r^{2} \times \frac{\theta}{360} \\
\text { Area }=\pi(4)^{2} \times \frac{288}{360}
\end{gathered}
$$

Step 3: Calculate the numerical value of the sector area and round the answer to the required degree of accuracy.

$$
\begin{gathered}
\text { Area }=\left[(16) \times \frac{288}{360}\right] \pi \\
\text { Area }=[12.8] \pi \\
\text { Area }=40.21 \ldots \mathrm{~cm}^{2}
\end{gathered}
$$

The area of the major arc sector is $40.2 \mathrm{~cm}^{2}$ to 1 decimal place.

Guided Example

Calculate the area of the minor sector to 1 decimal place.

Step 1: Work out numerical values for r and θ.

Step 2: Substitute values into the equation.

Step 3: Calculate the numerical value of the arc area in terms of π.

Now it's your turn!

If you get stuck, look back at the worked and guided examples.
5. Calculate the area of the minor arc sector to 1 decimal place.

6. Calculate the area of the major arc sector to 1 decimal place.

7. Calculate the area of the minor arc sector to 1 decimal place.

8. Calculate the area of the major arc sector to 1 decimal place

Section C

Worked Example

Calculate $\boldsymbol{\theta}$ to 1 decimal place when the minor arc length is 3.5 cm
Step 1: Work out numerical values for r .

$$
r=3.1 \mathrm{~cm}
$$

For minor arc length we use the angle that is less than $180^{\circ}-$ calling this x°
Step 2: Substitute values into the equation.

$$
\begin{gathered}
\text { Arc Length }=2 \pi r \times \frac{\theta}{360} \\
\text { Arc Length }=2 \pi(3.1) \times \frac{x}{360}
\end{gathered}
$$

Step 3: Calculate the numerical value of the arc length in terms of π.

$$
\begin{gathered}
\text { Arc Length }=\left[2(3.1) \times \frac{x}{360}\right] \pi \\
\text { Arc Length }=\frac{6.2 x}{360} \pi
\end{gathered}
$$

Step 4: Equate the arc length with the value in the question

$$
3.5=\frac{6.2 x}{360} \pi
$$

Step 5: Solve for the angle x

$$
\begin{gathered}
3.5 \div\left(\frac{6.2 \pi}{360}\right)=x \\
64.688 . .^{\circ}=x
\end{gathered}
$$

Step 6: Calculate θ
Angles around a point equal 360°

$$
\begin{gathered}
360-x=\theta \\
360-64.688 . .=\theta \\
295.31 . .=\theta
\end{gathered}
$$

$\theta=295.3$ to 1.d.p

Guided Example

Calculate θ to 1 decimal place when the major arc length is 56.3 cm
Step 1: Work out numerical values for r.

Step 2: Substitute values into the equation.

Step 3: Calculate the numerical value of the arc length in terms of π.

Step 4: Equate the arc length with the value in the question

Step 5: Solve for x

Step 6: Calculate θ

Now it's your turn!
If you get stuck, look back at the worked and guided examples.
9. Calculate θ to 1 decimal place when the major arc length is 341.3 cm

10. Calculate θ to 1 decimal place when the minor arc length is 34.2 cm

11. Calculate θ to 1 decimal place when the major arc length is 47.7 cm

12. Calculate θ to 1 decimal place when the area of the major sector is $1876 \mathrm{~cm}^{2}$

