

GCSE Maths - Algebra

Numerical Iteration (Higher Only)

Worksheet

WORKED SOLUTIONS

This worksheet will show you how to work out different types of numerical iteration questions. Each section contains a worked example, a question with hints and then questions for you to work through on your own.

This work by PMT Education is licensed under CC BY-NC-ND 4.0

▶ Image: Contraction PMTEducation

Section A

Worked Example

Using a starting value of $x_0 = 9.3$, use numerical iteration to find the solution to the equation $x^2 - 10x + 6 = 0$ to 3 decimal places.

Step 1: Rearrange the equation so that it is in the correct form.

$$x^{2} - 10x + 6 = 0$$

$$x^{2} = 10x - 6$$

$$x = \sqrt{10x - 6}$$

$$x_{n+1} = \sqrt{10x_{n} - 6}$$

Step 2: Add in the iteration notation.

Step 3: Substitute in the starting value (x_0) for x_n to obtain x_1 . Repeat until the same answer is obtained twice.

 $x_1 = \sqrt{10 \times 9.3 - 6} = 9.327 \dots$ $x_2 = \sqrt{10 \times 9.327 - 6} = 9.342 \dots$ $x_3 = \sqrt{10 \times 9.342 - 6} = 9.350 \dots$ $x_4 = \sqrt{10 \times 9.350 - 6} = 9.354 \dots$ $x_5 = \sqrt{10 \times 9.354 - 6} = 9.356 \dots$ $x_6 = \sqrt{10 \times 9.356 - 6} = 9.357 \dots$ $x_7 = \sqrt{10 \times 9.357 - 6} = 9.358 \dots$ $x_8 = \sqrt{10 \times 9.358 - 6} = 9.358 \dots$

Now that we have the same answer twice (to 3 decimal places), this is our final solution.

x = 9.358

Guided Example

Work out the solution to $x^3 - 15x + 12 = 0$ using numerical iteration, beginning with $x_0 = 3.3$. Give the solution to 3 decimal places.

Step 1: Rearrange the equation so that it is in the correct form.

χ

11 **N**1

$$\chi^{3} - 15\chi + 12 = 0$$

 $\chi^{3} = 15\chi - 12$
Step 2: Add in the iteration notation.
 $\chi_{n+1} = \sqrt[3]{15\chi - 12}$

Step 3: Substitute in the starting value
$$(x_0)$$
 for x_n to obtain x_1 . Repeat until the same answer is obtained twice.
 $x_1 = 3\sqrt{15(3\cdot3)-12} = 3\cdot3471...$
 $x_5 = 3\sqrt{15(3\cdot3813)-12} = 3\cdot38306...$
 $x_6 = 3\sqrt{15(3\cdot38306)-12} = 3\cdot38363...$
 $x_7 = 3\sqrt{15(3\cdot36808)-12} = 3\cdot38363...$
 $x_7 = 3\sqrt{15(3\cdot36808)-12} = 3\cdot37727....$
 $x_7 = 3\sqrt{15(3\cdot3847)-12} = 3\cdot384167...$
 $x_8 = 3\sqrt{15(3\cdot3847)-12} = 3\cdot384167...$
 $x_8 = 3\sqrt{15(3\cdot3847)-12} = 3\cdot38431...$
 $x_8 = 3\sqrt{15(3\cdot3847)-12} = 3\cdot38431...$

www.pmt.education

Now it's your turn!

If you get stuck, look back at the worked and guided examples.

- 1. Calculate the solutions to the following, using numerical iteration. Give the solutions to 3 decimal places.
- a) $x^2 + 3x 80 = 0$, starting with $x_0 = 7.6$

() Rearrange the equation : $+80 - \pi^{2} + 3\pi - 80 = 0$ $3\pi (\pi^{2} = 80 - 3\pi)$ square $(\pi = \sqrt{80 - 3\pi)}$ (2) Write the iteration notation : $\pi_{n+1} = \sqrt{80 - 3\pi}$

3 Perform calculation:

$$\chi_{1} = \sqrt{80 - 3(7.6)} = 7.56306....$$

$$\chi_{2} = \sqrt{80 - 3(7.56306)} = 7.57038...$$

$$\chi_{3} = \sqrt{80 - 3(7.57038)} = 7.56893...$$

$$\chi_{4} = \sqrt{80 - 3(7.56893)} = 7.569226...$$

$$\chi_{5} = \sqrt{80 - 3(7.569226)} = 7.569169...$$
Stop (alministron be cause the same answer has been obtained to 3 decimal place.

The answer is 7.569

b) $2x^3 - 8x^2 - 5 = 0$, with a starting value of $x_0 = 4.1$

() Rearrange the equation :	3 Perform calculation:
$2\pi^{3}-8\pi^{2}-5=0$	$R_1 = 3\sqrt{4(4.1)^2 + \frac{5}{2}} = 4.116176$ $Y_1 = 4.145$
$\chi^{3} = 4\chi^{2} + \frac{5}{2}$ $\chi = \sqrt[3]{4\chi^{2} + \frac{5}{2}}$	$\begin{aligned} x_{2} &= \sqrt[3]{4(4.116176)^{2} + \frac{5}{2}} &= 4.1266\\ x_{3} &= \sqrt[3]{4(4.1266)^{2} + \frac{5}{2}} &= 4.1333\\ x_{4} &= \sqrt[3]{4(4.1333)^{2} + \frac{5}{2}} &= 4.13766 \end{aligned}$
2 (2) Write the iteration notation:	$\chi_{5} = \sqrt[5]{4(4.13766)+5/2} = 4.14044$ $\chi_{6} = \sqrt[3]{4(4.140)^{2}+5/2} = 4.1422.4$
$\chi_{n+1} = \frac{3}{\sqrt{4(\chi_n)^2 + \frac{5}{2}}}$	$\pi_{7} = \sqrt[3]{4(4.(4229)^{2} + 5/2)} = \frac{4.14339}{4.(4413)}$
	$x_{9} = \sqrt[3]{4(4.144)^{2} + 57_{2}} = 4.14461}$ $y_{5} = 4.14461}$ $y_{5} = 4.19461}$

c) $2x^3 + 4x = 14$, with a starting value of $x_0 = 1$

() Rearrange the equation :

 $-4\pi \left(\begin{array}{c} 2\pi^{3} + 4\pi = 14 \\ 2\pi^{3} = 14 - 4\pi \\ \div 2 \left(\begin{array}{c} \pi^{3} = 7 - 2\pi \\ \text{wbe} \end{array} \right) \right)$

(2) Write the iteration notation:

$$\chi_{n+1} = \sqrt[3]{7-2} \chi_n$$

Answer: 1.569

(3) ferform calculation:

$$\chi_1 = \sqrt[3]{7-2(1)} = 1.7099...$$

 $\chi_2 = \sqrt[3]{7-2(1.7099)} = 1.5298...$
 $\chi_3 = \sqrt[3]{7-2(1.5298)} = 1.57948...$
 $\chi_4 = \sqrt[3]{7-2(1.5794)} = 1.56609...$
 $\chi_5 = \sqrt[3]{7-2(1.5794)} = 1.5697...$
 $\chi_6 = \sqrt[3]{7-2(1.5697)} = 1.5687...$
 $\chi_7 = \sqrt[3]{7-2(1.5697)} = 1.5687...$
 $\chi_8 = \sqrt[3]{7-2(1.5697)} = 1.5689...$
 $\chi_8 = \sqrt[3]{7-2(1.5697)} = 1.5689...$

d) $0.5x^3 + 2.5x - 10 = 0$, with a starting value of $x_0 = 2$

(i) Rearrange the equation : 2.5x $0.5x^3 + 2.5x - 10 = 0$ +10 (s) $0.5x^3 = 10 - 2.5x$ $\div 0.5$ (s) $x^3 = 20 - 5x$ cube (s) $x = \sqrt[3]{20 - 5x}$ (2) Write the iteration notation : $\pi n + 1 = \sqrt[3]{20 - 5\pi n}$

) ferform calculation :

$$\chi_1 = \sqrt[3]{20 - 5(2)} = 2.15443...$$

 $\chi_2 = \sqrt[3]{20 - 5(2.154)} = 2.09749...$
 $\chi_3 = \sqrt[3]{20 - 5(2.09749)} = 2.1189...$
 $\chi_4 = \sqrt[3]{20 - 5(2.1189)} = 2.11089...$
 $\chi_5 = \sqrt[3]{20 - 5(2.11089)} = 2.11386...$
 $\chi_6 = \sqrt[3]{20 - 5(2.11386)} = 2.11274...$
 $\chi_7 = \sqrt[3]{20 - 5(2.11386)} = 2.11274...$
 $\chi_8 = \sqrt[3]{20 - 5(2.11274)} = 2.11316...$
 $\chi_8 = \sqrt[3]{20 - 5(2.11316)} = 2.11300...$

Answer: 2.113

