

GCSE Maths – Algebra

Functions

Worksheet

NOTES

SOLUTIONS

This worksheet will show you how to work out different types of function questions. Each section contains a worked example, a question with hints and then questions for you to work through on your own.

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Section A

Worked Example

Find the value of $g(x) = x^3 + 2x^2 - 9x + 1$ when x = 3.

Step 1: Substitute x = 3 into the function g(x). Replace every x in the function with the numerical value 3.

$$g(3) = (3)^3 + 2(3)^2 - 9(3) + 1$$

Step 2: Simplify where possible by multiplying out the brackets and applying powers.

$$27 + 2(9) - 27 + 1 = 27 + 18 - 27 + 1$$

Step 3: Complete the final sum.

$$27 + 18 - 27 + 1 = 18 + 1 = 19$$

Answer:
$$g(3) = 19$$

Guided Example

If $f(x) = (x+7)(6-x^2)(4+x)$ what is the value of f(4)?

Step 1: Substitute x = 4 into the function f(x).

Step 2: Simplify each term where possible.

Step 3: Compute the final sum.

Now it's your turn!

If you get stuck, look back at the worked and guided examples.

- 1. Complete the following:
- a) Find the value of f(5) when f(x) = 3x 2.
- b) Find the value of g(7) when $g(x) = 4x x^2$.
- c) Find the value of h(9) when $h(a) = \sqrt{a} 2a^3 + 1$.
- d) Find the value of f(-8) when $f(x) = 5x + 3(\sqrt[3]{x}) 2x^2$.
- 2. Solve the following for x:
- a) $h(x) = x^2 5x + 2$, h(x) = -4.
- b) f(x) = 18x 2, f(x) = 6.
- 3. If $g(x) = x^3 2(\sqrt[4]{x}) + 1$ what is an expression for g(16x)?

Section B – Higher Only

Worked Example

Find the inverse function of f(x) = 2x + 1.

Step 1: Replace f(x) with y.

$$y = 2x + 1$$

Step 2: Rearrange the terms to make x the subject of the equation.

$$y - 1 = 2x$$

$$\frac{y-1}{2} = x$$

Step 3: Replace x with y and y with $f^{-1}(x)$.

$$\frac{x-1}{2}=f^{-1}(x)$$

Answer:
$$f^{-1}(x) = \frac{x-1}{2}$$

Guided Example

Find the inverse function of $h(x) = \frac{2-x}{x}$.

Step 1: Replace h(x) with y.

Step 2: Make x the subject of the equation.

Step 3: Replace x with y and y with $h^{-1}(x)$.

Now it's your turn!

If you get stuck, look back at the worked and guided examples.

4. Find the inverse of the following functions:

a)
$$f(x) = 4x + 7$$

b)
$$g(x) = 15x^2 + 3$$

c)
$$f(x) = \frac{2x}{3+x}$$

d)
$$h(x) = \frac{4-3x}{x+3}$$

5. Find the value of $f(x) = x^2 - 3$ if $x = f^{-1}(6)$.

6. Find the value of $g(x) = \frac{9-9x^2}{x^2}$ if $x = g^{-1}(7)$.

7. Solve $h(x) = 3x^2 + 6$ for x given $h^{-1}(x) = 2$.

8. If $f^{-1}(x) = 5x^2 - 3$ what is f(x)?

Section C – Higher Only

Worked Example

Given f(x) = 2x - 7 and g(x) = 4x + 5 find fg(x).

Step 1: Place the innermost function g(x) into the outermost function f(x) in place of x.

$$fg(x) = 2g(x) - 7 = 2(4x + 5) - 7$$

Step 2: Simplify by expanding the brackets and collecting like terms.

$$fg(x) = 2(4x + 5) - 7 = 8x + 10 - 7$$
$$fg(x) = 8x + 3$$

Answer: fg(x) = 8x + 3

Worked Example

Given $f(x) = x^2 - 7x$ and g(x) = 3x - 3 find fg(2).

Step 1: Place the innermost function g(x) into the outermost function f(x) in place of x.

$$fg(x) = (3x - 3)^2 - 7(3x - 3)$$

Step 2: Simplify by expanding the brackets and collecting like terms.

$$fg(x) = (3x - 3)(3x - 3) - 7(3x - 3)$$
$$fg(x) = (9x^2 - 9x - 9x + 9) - 7(3x - 3)$$
$$fg(x) = 9x^2 - 18x + 9 - 21x + 21 = 9x^2 - 39x + 30$$

Step 3: Substitute x = 2 into fg(x) to find fg(2).

$$fg(2) = 9(2)^2 - 39(2) + 30$$
$$fg(2) = -12$$

Answer: fg(2) = -12

Guided Example

Given f(x) = 5x + 3 and $g(x) = 3x^2 + 12$, find gf(x).

Step 1: Place the innermost function f(x) into the outermost function g(x) in place of x.

Step 2: Simplify by expanding the brackets and collecting like terms.

Guided Example

Given $f(x) = \frac{x^2-3}{x}$ and $g(x) = 3x^2 + 12$, find fg(6).

Step 1: Place the innermost function g(x) into the outermost function f(x) in place of x.

Step 2: Simplify by expanding the brackets and collecting like terms.

Step 3: Substitute x = 6 into fg(x) to find fg(6).

Now it's your turn!

If you get stuck, look back at the worked and guided examples.

8. Find
$$fg(x)$$
, given $f(x) = 3(x - 4)$ and $g(x) = \frac{x}{5} + 1$.

9. Find
$$gf(x)$$
, given $g(x) = 3x + 5$ and $f(x) = \frac{1}{3}x - \frac{5}{2}$.

10. Given
$$f(x) = 1 - 2x^3$$
 and $g(x) = \frac{3}{x} - 4$, show that $gf(x) = \frac{8x^3 - 1}{1 - 2x^3}$.

11. Given
$$f(x) = 4x + 6$$
 and $g(x) = x^2 - 9$, find the value of $fg(3)$.

12. Given $f(x) = x^2 - 4$ and g(x) = 4x - 1, find the value of fg(x - 2).

13. Given $g(x) = \frac{5}{4x}$ and $f(x) = 7x^2 + 3x - 2$, find the value of gf(4).

14. If $f(x) = x^2 + 1$, what is ff(x)?

15. If $f(x) = 2 - 3x^2$ and g(x) = 12x - 1, which value is greater: f(g(3)) or g(f(3))?