GCSE Maths - Algebra

Straight Line Graphs

Worksheet

This worksheet will show you how to work out different types of questions involving straight line graphs. Each section contains a worked example, a question with hints and then questions for you to work through on your own.

Section A

Worked Example

Plot point $(3,-2)$ on a graph.

Step 1: Work out the x and y values of the point

The x value is 3 .
The y value is -2 .
Step 2: Locate where these points will be placed
From the x-coordinate we know the point will be 3 units right from the origin and from the y coordinate we know the point will be 2 units down from the origin.

Step 3: Plot the point on a graph.

Guided Example
State the coordinates of Point A given in the graph below.

Step 1: Locate the values of x and y of the point A.

Step 2: Write the point A in coordinate form.

Now it's your turn!

If you get stuck, look back at the worked and guided examples.

1. State the coordinates of Point A given in the graph below.

2. State the coordinates of Point A given in the graph below.

3. Plot point $(-4,3)$ in the graph below.

4. Plot point $(-10,-11)$ in the graph below.

Section B

Worked Example

Draw the graph $y=-2 x+1$ between $-5 \leq x \leq-1$.

Step 1: Create a table with x values between -5 and -1 .

x	-5	-4	-3	-2	-1
y					

Step 2: Calculate the y values by substituting in the x values to the given equation.

\boldsymbol{x}	$\mathbf{- 5}$	$\mathbf{- 4}$	$\mathbf{- 3}$	$\mathbf{- 2}$	$\mathbf{- 1}$
\boldsymbol{y}	11	9	7	5	3

For example, for $x=-5$:

$$
\begin{gathered}
y=-2 x+1 \\
y=-2(-5)+1 \\
y=10+1 \\
y=11
\end{gathered}
$$

Step 3: Form coordinate points out of the table of values. Plot these points on the graphs and join this up with a ruler.

From the table, the graph passes through coordinate points ($-5,11$), ($-4,9$), ($-3,7$), ($(-2,5)$ and $(-1,3)$. We plot these points and then draw a line passing through the points. Extend the line beyond the points in both directions.

Guided Example

Draw the graph $y=5 x-1$ between $2 \leq x \leq 10$
Step 1: Create a table with x values between 2 and 10.

x					
y					

Step 2: Calculate the y values by substituting in the x values to the given equation.

$$
y=5 x-1
$$

x					
y					

Step 3: Form coordinate points out of the table of values. Plot these points on the graphs and join this up with a ruler.

Now it's your turn!
If you get stuck, look back at the worked and guided examples.
5. Draw the graph $y=x+3$ between $-2 \leq x \leq 2$

6. Draw the graph $y=4 x-10$ between $-2 \leq x \leq 2$

7. Draw the graph $y=-3 x+7$ between $-1 \leq x \leq 5$

8. Draw the graph $2 y=-8 x+10$ between $-5 \leq x \leq-1$

Section C

Worked Example

Line M passes through the points $(4,15)$ and $(2,7)$. Find the equation of Line M in the from $y=m x+c$.

Step 1: Using the coordinates of the two points given, calculate the gradient of Line M.
We are given $\left(x_{1}, y_{1}\right)=(4,15)$ and $\left(x_{2}, y_{2}\right)=(2,7)$.
Gradient mof the Line M:

$$
m=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{15-7}{4-2}=\frac{8}{2}=4
$$

The gradient of Line M is 4 .
Step 2: Find the value of c (the y-intercept) by substituting known values into the form $y=m x+c$.
We know $m=4$ and we also know the line passes through the point $(x, y)=(4,15)$.
Substitute these known values into the form $y=m x+c$ and solve for c :

$$
\begin{gathered}
y=m x+c \\
15=4(4)+c \\
15=16+c \quad \Rightarrow \quad c=-1
\end{gathered}
$$

Step 3: Substitute m and c values into the general form $y=m x+c$ to find the equation of the line. We found $m=4$ and $c=-1$:

$$
y=4 x-1
$$

Guided Example

Line L passes through the point $(-3,11)$ and $(1,-9)$. Find the equation of Line L in the from $\boldsymbol{y}=\boldsymbol{m x}+\boldsymbol{c}$.

Step 1: Using the coordinates of the two points given, calculate the gradient of Line M.

Step 2: Find the value of c (the y-intercept) by substituting known values into the form $y=m x+c$.

Step 3: Substitute m and c values into the general form $y=m x+c$ to find the equation of the line.

Now it's your turn!
If you get stuck, look back at the worked and guided examples.
9. The gradient of a line is equal to 2 and the line passes through the point $(-5,3)$. Find the equation of the line.
10. The gradient of a line is $-\frac{1}{3}$ and the line passes through the point $(-6,-2)$. Find the equation of the line.
11. A line passes through the points $(2,10)$ and $(1,3)$. Find the equation of the line in the from $y=m x+c$.
12. A line passes through the points $(-10,1$,$) and (4,7)$. Find the equation of the line in the from $y=m x+c$.
13. A line passes through the points $(6,-9)$ and $(4,2)$. Find the equation of the line in the from $y=m x+c$.
14. A line passing through the origin also passes through the point $(1,-7)$. Find the equation of the line in the from $y=m x+c$

Section D

Worked Example

Find the gradient of the line given in the following graph:

Step 1: Find the numerical value of the gradient by looking at how the y value changes as the x value increases by 1 .

For every 1 unit across in the x-direction, the y value of the graph increases by 3. This means the gradient of the line is $m=3$.

Step 2: Find the correct sign for the gradient.

The line slopes upwards towards the top right corner of the axis so the gradient is positive. The gradient of the
 line is 3 .

Guided Example

Find the equation of the line given in the graph below:

Step 1: Find the numerical value of the gradient by looking at how the y value changes as the x value increases by 1 .

Step 2: Find the correct sign for the gradient.

Step 3: Identify the value of the y-intercept (the value of c).

Step 4: Find the equation of the line by substituting the values of m and c into the form $y=m x+c$.

Now it's your turn!

If you get stuck, look back at the worked and guided examples.
15. Find the gradient of the line given below:

16. Find the gradient of the line given below:

17. Find the equation of the line given below:

18. Find the equation of the line given below:

Section E

Worked Example

Find the equation of the line that is parallel to $y=\frac{1}{2} x-1$ and passes through the point (2,1).

Step 1: When two lines are parallel, the gradient m will be the same for both lines.
The gradient of $y=\frac{1}{2} x-1$ can be found by comparing it to the general form $y=m x+c$.
So, the gradient is $m=\frac{1}{2}$. The gradient of the new line will be $\frac{1}{2}$ also.

Step 2: Calculate the value of c (the y-intercept) of the new line by substituting the gradient and coordinates given into the general form $y=m x+c$ and solving for c.

We have $m=\frac{1}{2}$ and we are given coordinates $(2,1)$:

$$
\begin{gathered}
y=m x+c \\
1=\frac{1}{2}(2)+c \\
1=1+c \\
0=c
\end{gathered}
$$

Step 3: Substitute values for m and c into the form $y=m x+c$ to find the equation of the line.
Since $m=\frac{1}{2}$ and $c=0$, the equation of the new line is $\boldsymbol{y}=\frac{1}{2} \boldsymbol{x}$.

Guided Example

Determine whether the line $y=3 x+1$ and $x+3 y=6$ are parallel.
Step 1: If the two the lines are parallel, the gradient m will be the same for both lines. Rearrange both equations so they are in the standard form $y=m x+c$.

Step 2: Compare the gradient m values and form a conclusion about whether the lines are parallel or not.

Now it's your turn!

If you get stuck, look back at the worked and guided examples.
19. Determine whether the line $2 y=6 x+3$ and $4 x+6 y=1$ are parallel.
20. Write the equation of the line parallel to $y=-x+2$ passing through point $(9,6)$.
21. Write the equation of the line parallel to $y=\frac{4}{5} x+1$ passing through point $(10,7)$.
22. Line M passes through points $(0,5)$ and $(2,1)$. Line L is parallel to M and passes through the point $(6,7)$. Find the equation of Line L in the form $y=m x+c$.
23. Line A passes through points $(1,3)$ and $(2,6)$. Line B passes through the points $(-3,-8)$ and $(-5,-14)$. Are these lines parallel?

Section F

Worked Example

Line A passes through the points $(4,12)$ and $(-1,-3)$. Given that line B is perpendicular to line A and passes through $(9,2)$, find the equation of line B in the form $y=m x+c$.

Step 1: When lines are perpendicular, the product of their gradients m_{1} and m_{2} is $m_{1} \times m_{2}=-1$.
Find the gradient m_{1} for line \mathbf{A} and use this to find the gradient m_{2} for line \mathbf{B}.
For line A, we are given $\left(x_{1}, y_{1}\right)=(4,12)$ and $\left(x_{2}, y_{2}\right)=(-1,-3)$. Gradient m_{1} of A :

$$
m_{1}=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}=\frac{12-(-3)}{4-(-1)}=\frac{15}{5}
$$

Finding gradient of line B:

$$
\begin{gathered}
m_{1} m_{2}=-1 \\
m_{2}=\frac{-1}{3}=-\frac{1}{3}
\end{gathered}
$$

The gradient of Line B is $m_{2}=-\frac{1}{3}$.

Step 2: Calculate the value of c (the y-intercept) of line B by substituting the gradient and coordinates given into the general form $y=m x+c$ and solving for c.

We have $m=-\frac{1}{3}$ and we are given coordinates $(9,2)$:

$$
\begin{gathered}
y=m x+c \\
2=-\frac{1}{3}(9)+c \\
2=-3+c \\
5=c
\end{gathered}
$$

Therefore, the equation of the Line B is $y=-\frac{1}{3} x+5$.

Guided Example

Determine whether the line $2 y=3 x+9$ and $2 x-3 y=1$ are perpendicular.

Step 1: Rearrange the equations so they are in the form $y=m x+c$. Identify the values of their gradients.

Step 2: Calculate the product of the gradients to form a conclusion about whether the lines are perpendicular.

Now it's your turn!
If you get stuck, look back at the worked and guided examples.
24. Determine whether the lines $9 y+3 x=-6$ and $6 x-8=2 y$ are perpendicular.
25. Line A has equation $y=\frac{3}{5} x+2$. Line B is perpendicular to A and passes through the point $(0,-2)$. Find the equation of line B.
26. Line A passes through the points $\left(-\frac{1}{2}, 4\right)$ and $(2,9)$. Given that line B is perpendicular to line A and passes through $(-4,-5)$, find the equation of line B in the form $y=m x+c$.
27. Line A and line B intersect at point $(0,-3)$.

Line A passes through the point $(-3,-2)$.
Given that line B is perpendicular to line A, find the equation of line B in the form $y=$ $m x+c$.
28. Line M is perpendicular to the line below. Line M passes through $(6,8)$. Find the equation for line M and draw it on the graph below.

