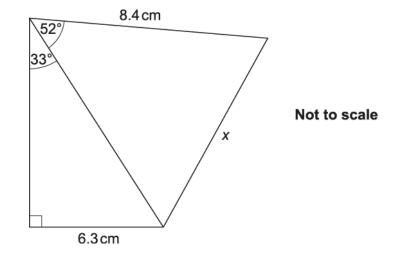
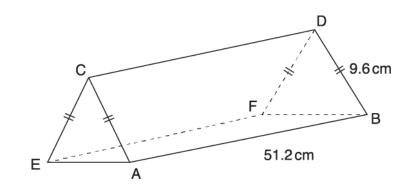

1. The lengths of the sides of a **right-angled** triangle are all integers.

Prove that if the lengths of the two shortest sides are even, then the length of the third side must also be even.

_____ _____ _____ _____ -----_____[<u>3]</u>


2(a). Write down the exact value of tan 60°.

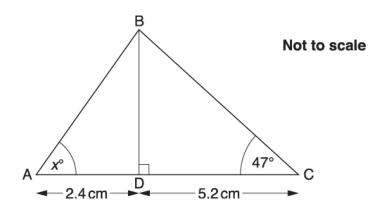

(b) _____ cm²[4]

3. Calculate x.

_____ cm [5]

4. The diagram shows a prism, made from two isosceles triangles and three rectangles.

AC = CE, AB = 51.2 cm and BD = 9.6 cm.

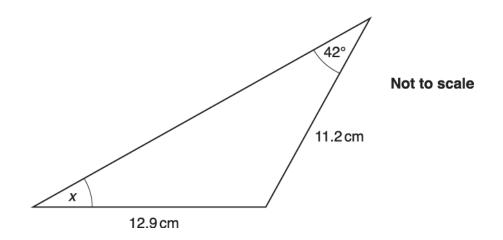

A spider walks from A to the midpoint, M, of CD and then to F.

Calculate the shortest distance that the spider can walk from A to M to F. Write your answer correct to 3 significant figures. Show how you worked out your answer.

_____cm

[5]

In triangle ABC, BD is perpendicular to AC.
 AD = 2.4 cm, DC = 5.2 cm and angle BCD = 47°.

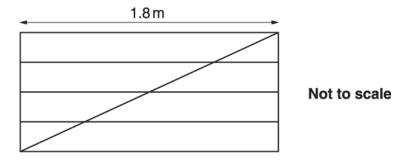


Calculate x.

°

[5]

6. Here is a triangle.

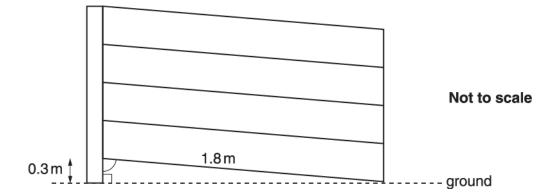


Work out the size of angle *x*.

_____ ° [3]

7(a). A gate has five horizontal bars and two vertical bars.

It also has one diagonal bar to keep the gate in the shape of a rectangle. The length of each horizontal and each vertical bar is in the ratio 3 : 2. The horizontal bars each have length 1.8 m.

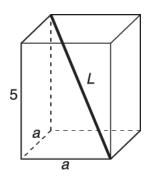


Calculate the total length of the eight bars used to make the gate.


_____m

[6]

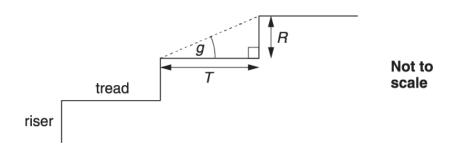
(b). Another gate is made using the same size horizontal and vertical bars but without a diagonal bar.It is fixed to a gatepost with one end of the bottom bar 0.3 m above the level ground.It is now no longer a rectangle and is touching the ground at the other end, as shown.



Calculate the angle between the bottom bar and the gatepost.

[3]

A cuboid of height 5 cm has a square base of side a cm.
 The longest diagonal of the cuboid is *L* cm.


Show that
$$a = \sqrt{\frac{L^2 - 25}{2}}$$
.

[4]

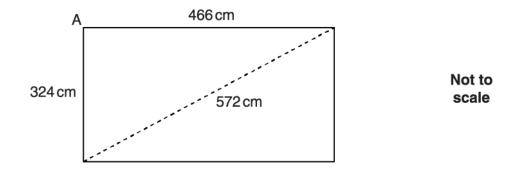
 Kahli has a sewing box which is a cuboid measuring 15 cm by 35 cm by 10 cm. She buys a pair of thin knitting needles which are 40 cm long.

Calculate whether a 40 cm knitting needle can fit in her sewing box. Show how you decide.

10(a) A staircase consists of treads of length T and risers of length R, as shown.

There are four safety requirements:

- T must be at least 220 mm
- R must be at most 220 mm
- T + 2R must be at least 550 mm and at most 700 mm
- angle g must not be more than 42°.


Russell wants a staircase with T = 222 mm and R = 218 mm. These values satisfy the first two safety requirements.

Show whether these values satisfy each of the other two safety requirements.

(b). Calculate the largest value that R can be when T = 270 mm. Show that your solution satisfies all the safety requirements.

_____ mm [4]

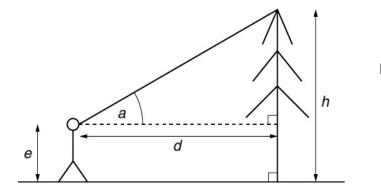
- 11(a) Catherine is designing a new kitchen.
 - She wants to find out whether the walls meet at an angle of 90°. She measures two walls and a diagonal across the kitchen floor. This diagram of the floor shows her measurements.

Use the wall measurements to calculate what the length of the diagonal should be if angle A = 90°.

_____ cm [3]

(b). Use your result for the length of the diagonal to decide whether angle A is equal to 90°, less than 90° or more than 90°. Show how you decide.

Angle A is ______ 90° because _____

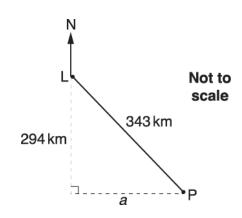

.....[1]

12. Pali wants to find the height, *h* m, of a tree.

He stands a distance, *d* m, from the tree.

Then he measures the angle, *a*, of the top of the tree from the horizontal.

His friend then measures the height, *e* m, of Pali's eye from the ground.

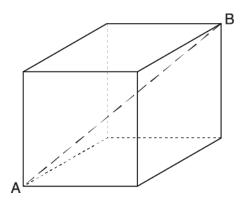

Not to scale

Show that the height of the tree is given by this formula.

 $h = e + d \tan a$

13(a) Paris, P, is 343 km from London, L.

It is 294 km south of London.


Calculate *a*, the distance that Paris is east of London.

(b). Calculate the bearing of Paris from London.

_____km [3]

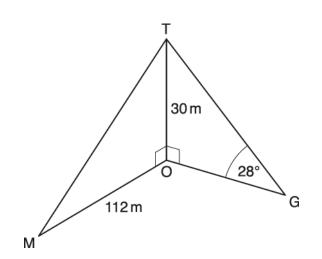
_____° [4]

14. * The diagonal, AB, of this cube has length 9 cm.

Work out the total surface area of the cube.

You may find it useful to call the length of the edges of the cube *x*.

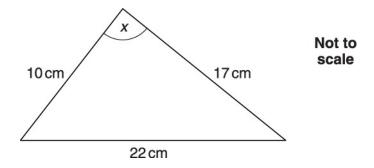
_____ cm²[6]

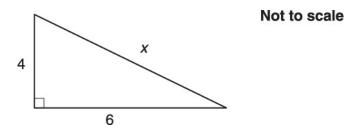

15. A vertical mobile phone mast, OT, is 30 m tall.

The diagram shows two of the straight wires, MT and GT, that support the mast.

M, G and O are all on horizontal ground.

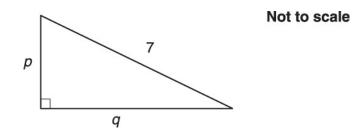
The angle of elevation of the top of the mast, T, from G is 28°.


M is 112 m from O.


What total length of wire has been used for MT and GT?

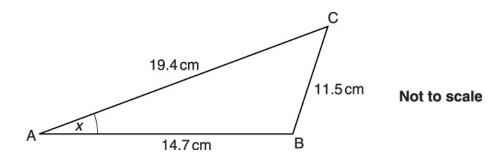
_____ m [6]

16. Elaine has this triangular piece of material.



Show that $x = 106^{\circ}$ correct to the nearest degree.

Show that *x* can be written as $2\sqrt{13}$.

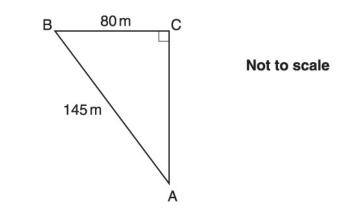

Find **two** different pairs of values for p and q where p is an integer. Write any surd in its simplest form.

p = _____ and *q* = _____

p = _____ and *q* = _____ [3]

18. The diagram shows a triangle ABC.

AB = 14.7 cm, BC = 11.5 cm and AC = 19.4 cm.



- (i) Show that triangle ABC is **not** a right-angled triangle.
- (ii) Calculate angle *x*.

(ii) _____ ° [3]

[3]

19(a) The diagram shows a swimming course set out on a lake. Angle BCA = 90°.

Swimmers go from A to B to C and then directly back to A.

Calculate the total length of the swimming course.

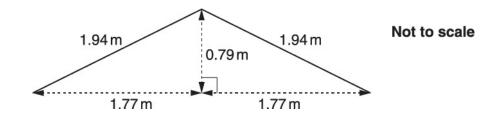
(b). C is due north of A.

Calculate the bearing of B from A.

_____° [4]

_____m [4]

20. * The pitch, x° , of a roof is the angle between the horizontal and the roof.

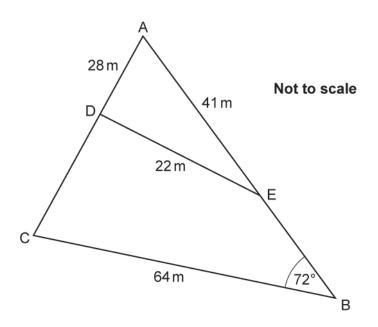

The roof of a house is covered with tiles.

The type of tile that can be used depends on the pitch (x°) of the roof.

The table below gives information about the range of pitch angles for some types of roof tile.

Туре	Plain	Slate appearance	Pantile	Low profile
Roof pitch (x°)	<i>x</i> □ 35°	<i>x</i> □ 25°	<i>x</i> □ 22·5°	<i>x</i> □ 17·5°

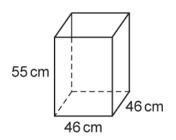
The diagram below shows the end elevation of a roof.



Which of these types of tiles could be used for this roof?

[5]	

21. The diagram shows triangle ABC with D on AC and E on AB. DE is a straight line.


AD = 28 m, AE = 41 m, DE = 22 m and BC = 64 m.

Calculate the length CD.

_____ m [6]

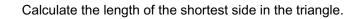
22. Alvin has a crate in the shape of a cuboid. The crate is open at the top.

The internal dimensions of the crate are 46 cm long by 46 cm wide by 55 cm high.

Alvin has a stick of length 95 cm.

Alvin places the stick in the crate so that the shortest possible length extends out above the top of the crate.

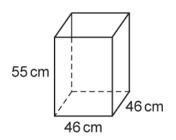
Calculate the length of the stick that extends out of the crate.


_____ cm [4]

F

Show that the triangle is a right-angled triangle.

(b). The hypotenuse of the triangle is 15 cm long.

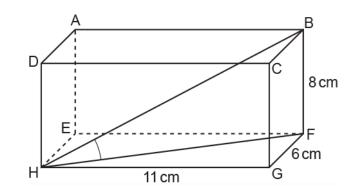


----- cm [4]

24. Alvin has a crate in the shape of a cuboid.

The crate is open at the top.

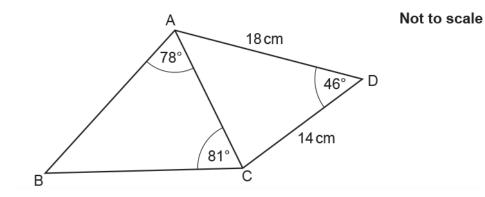
The internal dimensions of the crate are 46 cm long by 46 cm wide by 55 cm high.


Alvin has a stick of length 95 cm.

Alvin places the stick in the crate so that the shortest possible length extends out above the top of the crate.

Calculate the angle the stick makes with the base of the crate.

_____ ° [3]


25. The diagram shows a cuboid ABCDEFGH.

Calculate angle BHF.

.....° [5]

26(a) ABC and ACD are triangles.

Show that AC = 13.0 cm, correct to 3 significant figures.

(b). Calculate BC.

..... cm [3]

[4]

END OF QUESTION PAPER

Qı	Question		Answer/Indicative content	Marks	Part marks and guidance	
1			e.g. $a^2 + b^2 = c^2$ $a = 2x$ and $b = 2y$ implies c^2 $= 4x^2 + 4y^2$ So <i>c</i> is even	3	B1 for use of Pythagoras' theorem M1 for even × even = even soi	
			Total	3		
2	а		$\sqrt{3}$	1		
	b		24√3	4	M1* for $\frac{\text{height}}{4\sqrt{3}} = their \tan 60^{\circ}$ A1 for 12 or $4\sqrt{3} \times \sqrt{3}$ *M1 Dep for $\frac{1}{2} \times 4\sqrt{3} \times their$ '12'	
			Total	5		
3			9.2(0)	5	M1 for $\frac{6.3}{\sin 33}$ A1 for 11.567() soi M1 dep *for evidence of cosine rule used M1 for <i>their</i> '11.6' ² + 8.4 ² - 2 × <i>their</i> '11.6' × 8.4 × cos 52	rot to 3 or more sf *Dep on 1st M1 84.7() seen implies 4
			Total	5		

Question	Answer/Indicative content	Marks	Part marks and guidance		
4	54.7	5	M2 for $\sqrt{their} (51.2 \div 2)^2 + 9.6^2$ or 27.3[4] or M1 for (<i>their</i> 51.2÷2) ² + 9.6 ² or 747.52 and M1 for <i>their</i> 27.3[4] × 2 A1 for 54.68[] Note: 54.68[] scores 4 marks If 0 scored then award SC1 for a Pythagorean statement e.g. $\sqrt{a^2 + b^2}$ where <i>a</i> and <i>b</i> are numbers. If A0 then SC1 for their answer to more than 3 sf correctly rounded to 3 sf.	Alt. method: M3 for $\sqrt{51.2^2 + 19.2^2}$ or M2 for 'their correct Pythagoras' statement $\sqrt{51.2^2 + their (9.6 \times 2)^2}$ or M1 for 'their correct partial Pythagoras' statement eg $51.2^2 + (their 9.6 \times 2)^2$ A1 for 54.68[] Examiner's Comments Many never used Pythagoras' Theorem but simply added lengths of edges giving an incorrect answer of 70.4. Another common incorrect answer was 44.8 where candidates incorrectly assumed the distance MF was 9.6 and then added this to AC (9.6) and then to CM (25.6).	
	Total	5			

Qı	Question		Answer/Indicative content	Marks	Part marks and guidance		
5			66.65 – 66.81 or 67	5	M2 for 5.2 × tan 47 or 5.57[] or 5.58 oe or M1 for tan 47 = [] \div 5.2 oe and M2 for tan ⁻¹ (' <i>their</i> 5.57' \div 2.4) oe or M1 for tan [x] = <i>their</i> 5.57 \div 2.4 oe	Accept any correct method e.g. sin rule i.e. tan ⁻¹ (2.323). Examiner's Comments This question was either answered very well or very poorly. Often the only attempt was to give an answer of 43 from using ABD as 47°. Rather than use the tangent twice there were many who tried to use sine rule or just sine or cosine with Pythagoras' Theorem. Some of these longer methods had figures all over the paper and were difficult to follow. Even if the method was correct and easy to follow, the answer often fell outside the acceptable range because there were too many approximations and truncations.	
			Total	5			
6			35.5 to 36	3	M2 for <u>11.2×sin42</u> soi by 0.5809 12.9 Or M1 for <u>sin x</u> = <u>sin42</u> oe 11.2 12.9	Examiner's Comments There were some excellent sine rule solutions to this question although some candidates struggled with the transformation of the formula after a correct substitution. Less able candidates assumed the triangle to be right-angled and used Pythagoras' theorem and/or trigonometry.	
			Total	3			

Question		n	Answer/Indicative content	dicative content Marks Part		t marks and guidance	
7	а		Vertical bar = 1.2 m	2	M1 for $\frac{2}{3} \times 1.8$ oe	NB may be on diagram	
			Diagonal bar = 2.16(3…) or 2.2 nfww	3	and M2 for $\sqrt{1.8^2 + their 1.2^2}$ or M1 for $1.8^2 + their 1.2^2$ or	allow their FT length of diagonal to imply the square root $1.8^2 + their 1.2^2$ ofseen evaluated;	
			Total 13.5 to 13.6 nfww	1	4.68	eg allow M2 for 1.9(386)	
						after $1.8^2 + 0.72^2 = 3.7584$	
						Examiner's Comments	
						Candidates coped well in this AO3 question with the unsignposted Pythagoras' theorem, with most realising that they needed to apply it for the diagonal bar. However, there were many errors in obtaining the height of the vertical bars, with a wrong use of the ratio 3 : 2 leading to dividing 1.8 by 5 instead of 3 a common error. However, a number of candidates gained all 6 marks on this question.	
	b		$\cos\theta = \frac{0.3}{1.8}$	M1	or for complete method correct using Pythag (adj = 1.7748) and another trig ratio	0 for scale drawing	
			Inv trig fn seen or used	M1	Not dep on first M1	may be implied by answer	

Question	Answer/Indicative content	Marks	Part marks and guidance		
	80.2 to 80.8	A1	accept 80 or 81 after correct trig seen; allow B3 for 80.2 to 80.8 nfww	Examiner's Comments Compared with previous inverse trigonometry questions, this was answered very well, with many correct responses and good notation. There were a few instances of the cosine rule and some candidates were determined to perform a sine inverse via first using Pythagoras to find the missing side – although the side was usually correct, premature rounding sometimes caused a lack of accuracy in the angle.	
	Total	9			

Qı	estion	Answer/Indicative content	Marks	Part marks and guidance		
8		$L^2 = 5^2 + a^2 + a^2$	M2	may be in root form; for clear correct 3D Pythagoras statement – may be in two stages;		
				or allow M1 for $L^2 = 52 + d^2$ oe, and M1 for $d^2 = a^2 + a^2$, where d is the diagonal of the base (accept the square roots of these statements)	or similarly may use the diagonal of a vertical face	
				allow only M1 for $L^2 = 5^2 + 2a^2$ with no prior stage or for a correct 3D Pythag statement such as 'when $a = 3$, $L^2 = 5^2 + 3^2 + 3^2$ '	working backwards: allow M1 for rearranging given answer to $2a^2 = L^2 - 25$ with at least one intermediate step and	
		$2a^2 = L^2 - 25$	M1	no FT from wrong statements or with a number subst for a	M1 for reaching $L^2 = 5^2 + 2a^2$ or $L^2 = 25 + 2a^2$ and M2 for full	
		showing $a = \sqrt{\frac{L^2 - 25}{2}}$	M1	for rearrangement to 2 <i>a</i> ² as subject	justification of why $L^2 = 25 + 2a^2$ oe using Pythagoras	

Question	Answer/Indicative content	Marks	Part marks a	nd guidance
			for completion to given answer showing at least one correct intermediate stage; NB square root symbol must extend below fraction line ; LHS may be in words	ignore extra work (may have errors) outside their main argument Examiner's Comments Many candidates found this proof difficult. Some were able to write down a correct 3D Pythagoras equation and rearrange this successfully. Others worked in two stages, finding the diagonal of the base and using this to find <i>L</i> . This method was less successful. The main difficulty was in squaring $\sqrt{2a^2}$. Others rearranged the answer to make L^2 the subject but could go no further. $L^2 = a^2 + 5^2$ was a common error. Many less able candidates merely attempted to substitute a number into the Pythagoras formula, or omitted this question.
	Total	4		

Question	Answer/Indicative content	Marks	Part marks and guidance		
9	$\sqrt{15^2 + 35^2 + 10^2}$	M2	M1 for 15 ² + 35 ² + 10 ² or 1550 (may be in two steps of 2D Pythagoras)	If in two steps then figures are: 15, 35 pair = 1450 sq rt = 38.0788 15, 10 pair = 325 sq rt = 18.0277 35, 10 pair = 1325 sq rt = 36.4005 (roots may be rot to 3sf or more) + must combine to earn M2 or M1	
	39.3 to 39.4 and no	A1	Ignore additional comments Allow 39 only after $\sqrt{15^2 + 35^2 + 10^2}$ or $\sqrt{1550}$ is shown with no premature approximation Allow B3 for 39.3 to 39.4 nfww and no Examiner's Comments Good candidates answered this well, although a few came to the wrong conclusion. Merely attempting 2-D Pythagoras was the usual error. Weak candidates often found the volume.	ie M0 for just 2D Pythagoras	
	Total	3			

Q	uestio	n Answer/Indicative content	Marks	Part marks a	nd guidance
10	а	<i>T</i> + <i>2R</i> = 658 [so OK]	B1	Or may use one of given values to find limits for the other	Using $T = 222$, $164 \le R \le 239$ Using $R = 218$, $114 \le T \le 264$
		$\tan g = \frac{R}{T} \text{ or } \frac{218}{222}$	M1	Condone poor notation	May find hypotenuse = 311.(1) and then use sin or cos
		Inverse trig fn seen or used	M1	FT <i>their</i> trig statement even if sin or cos used; may be implied by answer	If using sine rule, need to get to
					$\sin g = \frac{218 \times \sin 90}{311(.1)}$ for M1,
		44 or 44.4 to 44.5 [so doesn't satisfy]	A1	A0 if say 'does satisfy' oe or:	similar stage for use of cos rule
				M2 for <i>R</i> = 222 × tan 42 or 218	
				$T = \frac{218}{\tan 42}$	
				Or M1 for tan 42 = $\frac{R}{222}$ or tan 42 = $\frac{218}{T}$	
				A1 for $R = 199.8-200$ so no or for T = 242(.1) so no (may be as inequalities but not required)	
				If M0, allow SC1 for scale drawing finding angle as 44 to 45·[and 'so No']	

Question	Answer/Indicative content	Marks	Part marks a	nd guidance
Question b Image: Constraint of the second	Answer/Indicative content Valid checking of all conditions and final conclusion max R = 215	4	Condone omission of explicitly checking conditions ' <i>T</i> must be at least 220 mm' and ' <i>R</i> must be at most 220 mm' $M1 \text{ for } [R =] 270 \text{ tan } 42 \text{ or}$ $R \text{ tan } 42 = \frac{R}{270}$ or correct trig statement using <i>T</i> = 270 and R = 215 or 220 M1 for <i>2R</i> + 270 = 700 seen or used Allow A1 for one of [<i>R</i> =] 243(. 1) or <i>R</i> = 215 or <i>g</i> = 38.5 Or allow M1A1 for 2 <i>R</i> + <i>T</i> oe = 710 from using <i>R</i> = 220 and <i>T</i> = 270 Examiner's Comments Many candidates made	May find hyp and use sin or cos but need to go on to have used <i>T</i> and <i>R</i> eg M1 for $2R = [280 \text{ to}] 430$ accept inequalities These values will imply the relevant M1 if not already earned; allow M1A1 for 2 × 215 + 270 = 700, allow amongst other trials if identified as correct M0 for just trials with other values of
				M0 for just trials with other

Q	uestio	n	Answer/Indicative content	Marks	Part marks a	nd guidance
			Total	8		
11	а		567.5 to 567.6 or 568 or 570	3	nfww M2 for $\sqrt{466^2 + 324^2}$ oe or equivalent complete method using trig (condone poor notation) Or M1 for $466^2 \pm 324^2$ or for 322 132 or any attempt at Pythagoras (eg 217 156 + 104 976) Examiner's Comments Most candidates made a good attempt at Pythagoras' theorem, with many gaining full marks. Some confused attempts at trigonometry were seen, but none concluded successfully.	570 from scale drawing scores 0
	b		More than 90 since diagonal should be less than 572 oe	1FT	FT only if at least M1 gained in (a) Examiner's Comments The comment was found more difficult and was sometimes omitted. However some very good explanations were seen which clearly demonstrated their appreciation of why the angle was more then 90°.	
			Total	4		

Qı	Question		Answer/Indicative content	Marks	Part marks and guidance	
12			Height of triangle = <i>h</i> – <i>e</i> oe	1	May be on diagram	eg y shown on diagram and h = y + e used
			Tan $a = \frac{h - e}{d}$ or $h - e = d$ × tan a	1	If 0 in question, allow SC1 for clear attempt to use tan a = opp/adj with $adj = deven if opp = hExaminer's CommentsThe explanations weregenerally poor. However,some clear correctstatements involving 'tan'were seen, and somecorrectly showed that h = e+ the opposite side of thetriangle, often sensiblyusing a diagram.$	
			Total	2		

Q	Question		Answer/Indicative content	Marks	Part marks a	nd guidance
13	а		a^2 + 294 ² = 343 ²	M1	oe; for correct Pythagoras statement	allow M1 for $a^2 = 31213$
			$\sqrt{343^2\pm294^2}$	M1		
			176.6 to 177	A1	or B3 nfww; allow A1 for 180 if correct method seen	
					Examiner's Comments	
					Most candidates realised that they needed to use Pythagoras' Theorem in the first part and many did so competently.	
	b		$e.g.\cos PLS = \frac{294}{343}$	M1	for a correct trig statement with clearly identified angle; may find either angle in the triangle	Condone poor notation [S here is 3 rd vertex of triangle; candidates will use other refs, e.g. o, a and h marked on the triangle.]
			use of inverse trig function	M1	allow even if wrong trig function used	if e.g. 31 appears with no identification, allow this to imply the second M1
			bearing = 148.9 to 149.1	A2	A1 for LPS = 58.9 to 59.1 or for PLS = 30.9 to 31.1	allow 148.0 to 149.1 to imply the correct angle used
					Examiner's Comments	
					Whilst measuring the bearing or assuming a 45° angle was common amongst the weaker candidates, most others included some reasonable trigonometry. Obtaining 31° or 59° was frequently seen,	
					although some did not always make it clear which angle they were finding. After succeeding with the hard trigonometry work, determining the correct bearing was a stage too far for many.	
			Total	7		

uestion	Answer/Indicative content	Marks	Part marks a	d guidance	
	* Answer of 161.99 to 162.24 with correct and clear method shown. Appropriate language throughout.	6	$x^{2} + x^{2} + x^{2} = 9^{2}$ $3x^{2} = 81$ $x^{2} = 27$ (x = $\sqrt{27}$) SA = $6x^{2} = 162$ (Allow 161.99 to 162.24)	For Pythagoras: – <i>a</i> , <i>b</i> and <i>c</i> must be a number or a letter (one of which may be <i>a</i> , <i>b</i> or <i>c</i>) - allow cosine rule with angle 90	
	Correct answer and method shown but with less structure to solution and slips in notation	5-4	Attempt to use 3D Pythagoras (could be using 2D twice) and attempt to find total surface area		
	Any attempt at Pythagoras in 3D Or correct use of Pythagoras in 2D and considers total surface area	3-2	Any attempt at Pythagoras in 3D Or any attempt at Pythagoras in 2D and considers total surface area	For 3 or more marks Pythag. must contain <i>x</i>	
		 * Answer of 161.99 to 162.24 with correct and clear method shown. Appropriate language throughout. Correct answer and method shown but with less structure to solution and slips in notation Any attempt at Pythagoras in 3D Or correct use of Pythagoras in 2D and 	 * Answer of 161.99 to 162.24 with correct and clear method shown. Appropriate language throughout. Correct answer and method shown but with less structure to solution and slips in notation Any attempt at Pythagoras in 3D Or correct use of Pythagoras in 2D and 	* Answer of 161.99 to 162.24 with correct and clear method shown. Appropriate language throughout.6 $x^2 + x^2 + x^2 = 9^2$ $3x^2 = 81$ $x^2 = 27$ $(x = \sqrt{27})$ $SA = 6x^2 = 162$ (Allow 161.99 to 162.24)Correct answer and method shown but with less structure to solution and slips in notation5-4Attempt to use 3D Pythagoras (could be using 2D twice) and attempt to find total surface areaAny attempt at Pythagoras in 3D Or correct use of Pythagoras in 2D and3-2Any attempt at Pythagoras in 3D Or any attempt at Pythagoras in 2D and	

Question	Answer/Indicative content	Marks	Part marks a	nd guidance
	Any attempt at Pythagoras in 2D or attempt to find total surface area	1-0	No relevant comment Examiner's Comments This was the QWC question for this paper. This requires candidates to present their work in a logical, coherent fashion and a small number were able to. Disappointingly, there were those who correctly found the length of a side of the cube but then found its volume instead of the surface area. Of the rest, most realised they needed to use Pythagoras' theorem but many got confused if they followed a 2-D method rather than a 3-D method. A trial and improvement method was seen on a number of occasions, often leading to a correct answer. It was common to see candidates assuming that AB was the diagonal of a square. Though an incorrect start, many went on to find a value for the length of the side of the cube and then the total surface area. Weaker candidates struggled to present correctly any correct form of Pythagoras' theorem.	For 2 or 1 marks Pythag. may be using values or letters and a value
	Total	6		

Que	estion	Answer/Indicative content	Marks	Part marks a	nd guidance
15		179.8 to 180 with commentary (may be using letters)	6	e.g. : TG = $30/\sin 28 = 63.9$ to 64 : TM = $\sqrt{(112^2 + 30^2)}$ =115.9 to 116	
				<u>Allow fully correct</u> <u>alternative methods for TG</u> <u>and TM</u>	
		179.8 to 180 with no commentary	5-4	30/sin28 soi <u>and</u> √(112 ² + 30 ²) soi	
		commentary $30/\sin 28 \text{ soi}$ OR $\sqrt{(112^2 + 30^2) \text{ soi}}$ OR $\sin 28 = 30/\times \text{ and } 112^2 + 30^2 \text{ soi}$	3-2	30 ²) soi sin 28 = 30/× <u>OR</u> 112 ² + 30 ² soi	

Question	Answer/Indicative content	Marks	Part marks and g	guidance
	sin identified as the trig ratio required for TG oe <u>OR</u> some use of Pythagoras for TM oe	1-0	No worthy workExaminer's CommentsA lot of candidates set their work out clearly, with appropriate commentary and scored full marks. Others spoiled their answers by not indicating which length(s) they were finding. In a QWC question more effort is needed to communicate the method being used and what is being found. Most used Pythagoras to calculate TM 	
	Total	6		

Question	Answer/Indicative content	Marks	Part marks a	nd guidance
16	106.225rot to at least 1dp	3	Mark best attempt M2 for $\frac{10^2 + 17^2 - 22^2}{2 \times 10 \times 17}$ oe Or M1 for $22^2 = 10^2 + 17^2 - 2 \times 10 \times 17 \times \cos x$ oe Examiner's Comments It was clear that many candidates did not understand the instruction to 'Show that'. Often they used 106° in the cosine rule formula to show that the opposite side was 22 cm. Some did understand, quoted the cosine rule formula with cos x as the subject, substituted the lengths and arrived at a value for the angle, given to at least one decimal place. Those using the cosine rule formula from the formula sheet usually substituted lengths correctly but then failed to rearrange their equation appropriately.	M2 soi by -0.2794117647 rot Or -95/340
	Total	3		

Qı	Question		Answer/Indicative content	Marks	Part marks and guidance		
17	а		4^2 + 6^2 or better	1	soi by 52		
			$\sqrt{52}$	1	soi by $\sqrt{4 \times 13}$ or $\sqrt{4} \times \sqrt{13}$		
			$\sqrt{4 \times 13}$ or $\sqrt{4} \times \sqrt{13}$ [= 2 $\sqrt{13}$]	1	$\sqrt{4 \times 13}$ or $\sqrt{4} \times \sqrt{13}$ accept $\sqrt{2} \times \sqrt{2} \times \sqrt{13}$		
					Examiner's Comments		
					Examiner's comments Most candidates recognised that they needed to use Pythagoras' Theorem and gave the correct equation, although a few tried to multiply rather than add while some failed to square the values correctly. The majority reached $\sqrt{52}$ but many could go no further or simply wrote $\sqrt{52} = 2\sqrt{13}$. Successful candidates reduced $\sqrt{52}$ into $\sqrt{2 \times 2 \times 13}$ or more frequently $\sqrt{4 \times 13}$ and a few lost out by writing $\sqrt{2 \times 26}$.		

Question	Answer/Indicative content	Marks	Part marks a	nd guidance
b	any two from p 1 2 3 4 5 6 q 4√3 3√5 2√10 √33 2√6 √13	3	B2 for one fully correct solution or for two correct solutions not fully simplified or B1 for one correct solution not fully simplified If 0 scored SC2 for both answers correctly simplified and reversed or SC1 for one correctly simplified answer reversed Examiner's Comments Most used the correct equation of $p^2 + q^2 = 7^2$ but few candidates understood the principle behind the question and frequently attempted using 'trial and improvement' with little apparent consideration of the outcomes achieved. Some failed by using integer values above 6 and others gave two pairs of integers or decimals. Others did not appreciate what an integer was and gave surds for both <i>p</i> and <i>q</i> . Unsimplified surds were fairly common but fortune smiled on those who selected 4 with $\sqrt{33}$ or 6 with $\sqrt{13}$ as they did not need to be simplified.	Unsimplified versions $p \ 1 \ 2 \ 3 \ 4 \ 5 \ 6$ $q \ \sqrt{48} \ \sqrt{45} \ \sqrt{40} \ \sqrt{33} \ \sqrt{24} \ \sqrt{13}$ or $2\sqrt{12}$ condone reduction to roots of prime numbers eg $\sqrt{33}=\sqrt{3}\sqrt{11}$ isw after correct unsimplified versions seen for max B2
	Total	6		

Question	Answer/Indicative content	Marks	Part marks and guidance		
Question 18 i	Answer/Indicative contentfull correct argument e.g. $14.7^2 + 11.5^2$ [=] 19.42348.34 \neq 376.36use of appropriate symbol (\neq) or a statement that these two numbers are not the same	3	Part marks at M1 for an appropriate method e.g. $\sqrt{19.4^2 - 11.5^2}$, $\sqrt{19.4^2 - 14.7^2}$, $\sqrt{11.5^2 + 14.7^2}$ oe or cosine rule for angle B A1 for correct result to compare e.g. 15.6, 12.6, 18.6 or 18.7 or B = 94.7 A1 for a statement that the result does not equal the actual figure Examiner's Comments In (i) it was intended that Pythagoras' theorem should be used, however in using trigonometry the question was made more difficult. There were some good calculations, but they need to show either AC has to be shorter or that angle B is not 90°. Other approaches rarely resulted in success.	nd guidance accept any correct method including a drawing tolerance ±2 mm, M1 for a triangle with one side correct A1 for all three sides correct A1 for measuring <i>their</i> angle accurately (±2°) or stating clearly it is not 90° e.g. another equivalent method would be 11.5 ² + 14.7 ² = 18.6 ² for M1 A1 allow these results rounded	
			not 90°. Other approaches		

Qı	uestio	n	Answer/Indicative content	Marks	Part marks a	nd guidance
		ii	36.2 to 36.22 or 36	3	M2 for (cos <i>a</i>) = $\frac{19.4^{2}+14.7^{2}-11.5^{2}}{2 \times 19.4 \times 14.7}$ or 0.8068() or M1 for 11.5 ² = 19.4 ² + 14.7 ² - 2 × 19.4 × 14.7 × cos (<i>their a</i>) Examiner's Comments In (ii) the only method was the cosine rule, but many used incorrect results from part (i) with the sine rule. Some tried to use trigonometry, applicable only to right-angled triangles and they should know that these methods are not valid for this type of triangle.	Make sure that 36 does not come from a wrong method
			Total	6		

Q	Question		Answer/Indicative content	Marks	Part marks and guidance		
19	a		345.9[3] or 346	4	B3 for 120.9[3] or 121 as answer OR M2 for $\sqrt{145^2 - 80^2}$ or $\sqrt{14625}$ Or M1 for 145 ² = 80 ² + AC ² or better AND M1 for 145 + 80 + their '120.9' Examiner's Comments Most candidates identified that this part required the application of Pythagoras' Theorem with many completely correct answers seen. Some candidates correctly found the length AC, but then lost the final mark because they did not add the sides to find the total length. A significant number of candidates used Pythagoras and added the squares rather than subtracting so could only gain a final method mark for finding the perimeter using their lengths: the diagram should have been a clue that AC should be shorter than AB. Very few candidates attempted to use trigonometry, usually unsuccessfully, as a route to finding AC.	Allow any number for 120.9 unless contradicted by their AC	

Question	Answer/Indicative content	Marks	Part marks a	Part marks and guidance	
b	326.5 to 326.6 or 327	4	B3 for 33.4 to 33.5 or 33	Allow 3 marks for answer 326 with no working	
			OR	3	
			M2 for sin ⁻¹ (80/145)		
			or cos ⁻¹ (<i>their</i> 120.9/145)		
			or tan ⁻¹ (80/ <i>their</i> 120.9)		
			Or		
			M1 for sin […] = 80/145		
			or cos [] = (<i>their</i>	Or M1 for any correct	
			120.9/145)	statement of sine or cosine	
			or tan [] = (80/ <i>their</i>	rule with values correctly	
			120.9)	substituted and M2 for	
			Or B1 for 56.5 to 56.6 seen	correct sin ⁻¹ or cos ⁻¹	
			AND	statement following from this	
			M1 for 360 – <i>their</i> BAC	uns	
			correctly evaluated	Their BAC must be clearly	
				identified, may be seen on	
			Examiner's Comments	diagram or be any angle found using trig	
			This part was very poorly		
			done with few candidates		
			identifying the need to use		
			trigonometry. Many		
			candidates measured an		
			angle from the diagram to		
			find the bearing, even		
			though 'not to scale' was stated and the question		
			asked for a calculation.		
			Candidates should have		
			noted the allocation of four		
			marks to this question and		
			realised that measuring an		
			angle could not be the		
			correct approach. Those		
			candidates who did use a		
			trigonometric ratio often		
			reached the correct value		
			for angle BAC and gained		
			three marks, with some		
			then correctly using that angle to find the bearing. It		
			was sometimes unclear		
			from working whether		
			candidates were applying a		
			trigonometric ratio		
			incorrectly or whether they		
			were finding an incorrect		
	l				

Question		n	Answer/Indicative content	Marks	Part marks and guidance
					angle. Some candidates used the sine rule, often correctly, or the cosine rule, usually incorrectly.
			Total	8	

Question	Answer/Indicative content	Marks	Part marks ar	nd guidance
20	* Fully correct and clear method to find pitch angle of roof leading to identification of Pantile and Low Profile tiles. Clear correct calculations using correct trig statements Angle calculated must be identified as pitch angle or <i>x</i> and must be correct and given to at least 2sf	5	eg pitch angle = $\tan^{-1}\left(\frac{0.79}{1.77}\right) = 24.1^{\circ} \text{ or } 24.05[]^{\circ}$ Pantile and low profile tiles suitable for this angle Alternative methods: $\sin^{-1}\left(\frac{0.79}{1.94}\right) = 24.0[3]^{\circ}$ or $\cos^{-1}\left(\frac{1.77}{1.94}\right) = 24.2^{\circ} \text{ or } 24.16[]^{\circ}$	
	Pantile and low profile tiles identified with correct angle seen, working not clearly set out and / or angle not identified as pitch OR Correct pitch angle found with clear correct calculations but no / incorrect identification of tiles OR Clear correct calculations with method with max one error leading to correct choice of tiles for <i>their</i> angle	4-3	Correct angle found with no / incorrect identification of tiles and working not clearly set out OR Correct inverse trig statement seen $\tan^{-1}\left(\frac{0.79}{1.77}\right)$ or $\sin^{-1}\left(\frac{0.79}{1.94}\right)$ or $\cos^{-1}\left(\frac{1.77}{1.94}\right)$	

Question	Answer/Indicative content	Marks	Part marks and guidance
	Correct trig statement for x or <i>their</i> identified angle seen $\tan = \frac{0.79}{1.77}$ or $\sin = \frac{0.79}{1.94}$ or $\cos = \frac{1.77}{1.94}$ OR Attempt at scale drawing with reasonable scale identified OR Attempt to use trigonometry or scale drawing and correct choice of tiles for their angle	2-1	Attempt to use trigonometry or attempt at scale drawing eg incorrect statement using trigonometry and at least one of 1.94, 1.77 or 0.79 OR Correct choice of tiles for <i>their</i> stated angle
	Allow equivalent marks for use of sine rule or cosine rule: $eg \sin^{-1}\left(\frac{0.79 \sin 90}{1.94}\right) = 24.0[3]$ or $\cos^{-1}\left(\frac{1.94^2 + 1.77^2 - 0.79^2}{2 \times 1.94 \times 1.77}\right) = 24.0[3]$ Allow equivalent marks for reverse calculations using pitch angles, for full marks both slate and pantiles must be considered: Eg Min height for each tile, must be compared with 0.79: plain = 1.77 tan 35 = 1.23, slate = 1.77 tan 25 = 0.825, pantile = 1.77 tan 22.5 = 0.733, low profile = 1.77 tan 17.5 = 0.558		Examiner's Comments Many candidates were able to use trigonometry correctly to calculate the angle of the roof and then use the given information to identify the correct types of tiles. As this was a quality of written communication question, in order to gain full credit, working had to be mathematically correct and clearly laid out with the calculations clearly identifying the angle being found, together with a clear conclusion identifying the appropriate tiles. There were a number of reasons for one mark being lost after reaching the correct angle: failing to identify the angle calculated as the pitch angle, selecting just pantiles, misunderstanding the inequalities and hence selecting slate and plain or not setting out the calculations in a mathematically correct way. Candidates were expected

Question	Answer/Indicative content	Marks	Part marks and guidance
			to show sufficient accuracy in their calculations and indicate clearly what values they were using, so expressions such as $\sin^{-1}(ans)$ were not acceptable for full credit. Candidates generally coped with being given more information than was required although some did use all three trigonometric ratios rather than just one. The majority of candidate used right-angled trigonometry although sine and cosine rule were also seen. Some candidates who used the cosine rule were unable to rearrange it correctly to find cos <i>A</i> . A small number of candidates used a reverse method and found the height of the roof or the length of the slope using the angle given for each type of tile, though they were then often confused about what to do with the values they had calculated.
	Total	5	3

Question	Answer/Indicative content	Marks	Part marks and guidance
21	92 or 92.28 to 92.6	6	M3 for correct explicit cos rule to find angle A in ADE with cos as subject.accept any correct methodM2 for correct implicit form of the cos rule to find angle A $22^2 = 28^2 +$ $41^2 - 2 \times 28$ $\times 41 \times \cos A$ 30.4 M1 for either of the above forms with only one errororM2 for correct sine rule e.g.orM1 for either of the above forms with only one errororM2 for correct sine rule co find angle A $22^2 = 28^2 +$ $41^2 - 2 \times 28$ $\times 41 \times \cos A$ orM1 for either of the above forms with only one errororM1 for either of the above forms with only one errororM2 for correct sine rule e.g. $\frac{64 \times \sin 72}{\sin nberd - 1} \cos esoiorM1 for\frac{64}{\sin nberd - 1} = \frac{1-7}{\sin 72} \cos 100if 0 scoredSC1 forexplicit formof cos ruleto r E in$

Question	Answer/Indicative content	Marks	Part marks and guidance		
			ADE e.g. [cos D =] $\frac{28^2 + 22^2 - 41^2}{2 \times 28 \times 22}$ Examiner's Commu- This question was be difficult and man candidates could in started. Three assu- were commonly ma- large number of the candidates; firstly, triangles ADE and were similar leadin ratio 2.9 being use AC; secondly, angle was a right angle lead a whole series of de possibilities for ang- such as 46.92°, 32 38.16°, but these was seldom used in the to find AC; thirdly, the was parallel to CB- angle AED 72°. The candidates who read they needed to used cosine rule to find a DAE fell into two ge those who correctly substituted the leng- the triangle ADE and then able to comple- problem with some (although some lose accuracy by approxi- the angle to 30°) a who either used the form of the rule and rearrange it success ended up finding a ADE.	found to iny not get sumptions nade by a ne that ACB ng to the ed to find ple ADE leading to different gle DAE, 2.45° or were e sine rule that DE making nose ealised e the angle groups: ly ngths of and were lete the e success st oximating and those he implicit od couldn't ssfully or	

Q	Question		Answer/Indicative content	Marks	Part marks and guidance		
			Total	6			
22			9.8[1]nfww	4 1 AO1.3b 2 AO3.1d 1 AO3.3	Accept answers rounding to 9.8 if correct working seen Condone for full marks minor rounding, 		
			Total	4			

Qı	Question		Answer/Indicative content	Marks	Part marks and guidance
23	a		180 ÷ (1 + 2 + 3) × 3 [= 90]	2	M1 for 180 $\div (1 + 2 + 3)$ Condone 6 for 1 + 2 + 33)If 0 scored, SC1 for angles 30, 60, 903 Examiner's Comments In part (a), some realised that division by $(1 + 2 + 3)$ was required to begin with. Many did not show the second step of multiplying by 30 and simply wrote 90 or 30, 60, 90. On 'show that' questions, where the answer is given, candidates must show every step in the method for the answer to receive full credit.
	b		7.5	4	B1 for sin 30° or cos $60^{\circ} = {}^{1}/{}_{2}$ soi M2 for 15 sin 30 oe or M1 for $x/15 = sin$ $30 oe$ Bar and the form $x/15 = sin$ $30 oe$ In part (b), the few candidates who recognised the need for an approach using trigonometry were nearly almost always successful and knew the value of sin 30 or cos 60. Many did not consider using trigonometry perhaps because there was no diagram for this part.
			Total	6	

Question	Answer/Indicative content	Marks	Part marks and guidance		
Question 24	Answer/Indicative content 40.2 nfww	Marks 3 1 AO1.3a 2 AO3.1c	M2 for sin [] = $\frac{55}{their/46^2 + 46^2}$ or tan [] = $\frac{55}{their/46^2 + 46^2}$ or cos [] = $\frac{their/46^2 + 46^2}{their/85.18 to 85.2}$ OR M1 for indication of required angle Examiner's Co Most candidat very good atter (a) and many	Accept 40° and answers rounding to 40.2 if correct working seen $0 \text{ for tan } [] = \frac{55}{46}$ M2 for cosine rule with cos as subject eg diagram showing angle	nd guidance
			least 2 marks. Som stronger candi calculated the diagonal in on most used two candidates ac Pythagoras' th but there were were unable to 3D. Those wh diagonal of the were more suc continuing to f diagonal of the Those who sta finding the dia front face as 7 subtracted this length of the s hadn't conside dimension. So final mark bec	idates internal e step, but o steps. Most curately used heorem in 2D, e many who o progress to o found the e base first ccessful in ind the e whole crate. arted by gonal of the '1.7 often s from the stick, yet they pred the third ome lost the	

Question	Answer/Indicative content	Marks	Part marks and guidance		
			premature approximation. Weaker responses did not use Pythagoras' theorem at all and calculated the volume of the cuboid instead. Part (b) was less well done but here, too, there was some good work from the stronger candidates. Those who stopped at 2D Pythagoras' theorem in part (a) usually were unable to identify the correct angle to be found.		
	Total	3			
25	32.6 or 32.56 or 32.556&	5	M2 for $\sqrt{(11^2 + 6^2)}$ accept any correct and soi by full method note: HB = 12.5312.52 to 12.53note: HB = 12.5312.5314.866or M1 for []^2 = 11^2 + 6^2 and M2 for tan [=] 8 ÷ their 12.52or M1 for 8 ÷ their 12.52 Examiner's Comments Many candidates did correctly find one of the diagonals, HF or HB, using Pythagoras' theorem. However they did not realise that the triangle was right-angled and a common method was the use of the sine or cosine rules.		
	Total	5			

Q	Question		Answer/Indicative content	Marks	Part marks and guidance
26	а		Attempt to use the cosine formula	M1	Evidenced by the formula $e.g. a^2 = b^2$
			$[]^2 =$	M2	e.g. a = b + c ² -2bc cos A or better
			14 ² + 18 ² – 2 × 14 × 18 cos 46 oe	or M1	
			or	IVI I	
			cosine formula with at most 2 errors or correct cosine formula starting cos	A1	Examiner's Comments
			$[] = \frac{14^2 + 18^2 - []^2}{2 \times 18 \times 14}$ 13.03	4	In part (a) quite a few candidates realised that they needed to use the cosine rule but could not substitute the values correctly whilst others failed to evaluate the correct values on their calculator. A few candidates lost credit by not giving their calculated value to more than 3 significant figures as required for a 'show that' question.
	b		35.48 to 35.6	3	B1 for 180could be on $-78 - 81$ ordiagram21accept anyM1 forcorrect $\frac{13.0}{sintheir21} = \frac{[]}{sin78}$ methodoe or bettermethodIn part (b) they needed tofind angle ABC first thenuse the sine rule. This stepwas found difficult by manycandidates.
			Total	7	