1(a). Express as a single fraction. $\frac{m+1}{n+1} - \frac{m}{n}$ Simplify your answer.

(a) _____ [2]

[2]

[3]

(b). Using your answer to part (a), prove that if m and n are positive integers and m < n, then

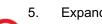
 $\frac{m+1}{n+1} - \frac{m}{n} > 0$

2. Bethany says that $(2x)^2$ is always greater than or equal to 2x.

Decide whether she is correct or not. Show your working to justify your decision.

OCR GCSE Maths - Algebraic Expressions (H)

3(a). Prove that the sum of four consecutive whole numbers is always even.


(b). Give an example to show that the sum of four consecutive integers is not always divisible by 4.

[2]

[3]

$$\frac{5}{x-2} + \frac{4}{x+3}$$

F

Expand and simplify.

 $(4+\sqrt{3})(1+\sqrt{3})$

[3]

[2]

6(a). Simplify fully.

$$\frac{16y^4}{2y^2}$$

(b). Multiply out the brackets.

 $4x^{2}(x-6)$

_____[2]

7(a). Simplify fully.

$$\frac{x^2-5x+4}{x^2-2x-8}$$

(b). Work out the value of *a* and the value of *b* in this identity. $x^2 - 8x + b \equiv (x + a)^2 + 2$

a = _____

_____ [4]

b = _____ [3]

8. You are given this identity

 $5x+3(2x-7) \equiv ax+b$

where *a* and *b* are integers.

Find the values of *a* and *b*.

a = _____ [2]

9(a). Factorise.

_____ [1]

_____ [2]

(b). Factorise.

$$x^2 - 4x + 3$$

(c). Use your answers to parts (a) and (b) to simplify this expression.

$$\frac{x^2-4x+3}{x^2-9}$$

.....[1]

10(a) Simplify fully.

15*xy* 10*y*²

.

(b). Factorise fully.

 $4x^2 + 10xy$

_____ [2]

11(a) Factorise.

.

(b). Hence solve this equation.

$$x^2$$
 + 2x - 15 = 0

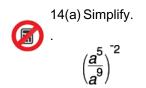
(c). Simplify fully.

$$\frac{x^2 + 2x - 15}{x^2 - 9}$$

12. Multiply out and simplify fully.

$$(3+\sqrt{7})(4+\sqrt{7})$$

You must show your working.


_____ [2]

_____ [1]

_____[2]

13. Simplify fully.

 $\frac{14x^2}{2x}$

_____ [2]

(b). Express as a single fraction in its simplest form.

4		5	
<u>x – 2</u>	-	x +	1

[3]

_____ [2]

[3]

16(a) Write this expression as a single power of x.

(b). Simplify.

 $\left(\frac{x^9}{x^{-3}}\right)^{\frac{1}{2}}$

 $\frac{x^2+2x-15}{x^2-9}$

_____ [4]

(i) Write $x^2 - 6x + 4$ in the form $(x + a)^2 + b$.

(i) _____ [3]

(ii) Using your answer to (b)(i), or otherwise, solve $x^2 - 6x + 4 = 0$. Write your answers correct to 1 decimal place.

(ii) *x* = _____ or *x* = _____ [2]

(i) $x^6 \times x^2$

.

(i)_____[1]

(ii) $x^9 \div x^3$

(ii)_____[1]

(b). Simplify.

$$\frac{9x^2-16}{3x^2+7x+4}$$

_____ [4]

19. Express as a single fraction.

$$\frac{3}{2y} - \frac{4}{5y}$$

20. Factorise $15x^2 + x - 2$.

21. Write $x^2 - 10x + 16$ in the form $(x + a)^2 + b$.

22.

Simplify.

 $\frac{x^2-16}{x^2-3x-4}$

_____ [4]

_____ [2]

_____ [2]

_____ [3]

23.

Write as a single fraction in its simplest form.

$$\frac{3}{x-1} + \frac{4}{x+2}$$

				[3]
24.	Simplify.			
	(i) $a^6 \div a^2$			
		(i)		[1]

(ii) $(b^5)^3$

(ii) _____ [1]

25.

Expand and simplify.

(2x-1)(x+5)(3x-2)

26(a)

.

Write $x^2 - 6x + 20$ in the form $(x - a)^2 + b$.

(b). Write down the turning point of the graph of $y = x^2 - 6x + 20$.

(-----) [2]

END OF QUESTION PAPER

Q	uestio	n	Answer/Indicative content	Marks	Part marks and guidance
1	а		$\frac{n-m}{n(n+1)}$	2	M1 for $\frac{n(m+1) - m(n+1)}{n(n+1)}$
	b		$m < n \Rightarrow n - m > 0$ $\Rightarrow \frac{n - m}{n(n+1)} > 0$ $\Rightarrow \frac{m+1}{n+1} - \frac{m}{n} > 0$	2	M1 for <i>their</i> $(\frac{n-m}{n(n+1)}) > 0$
			Total	4	
2			e.g. When $x = 0.1$ $(2x)^2 = 0.04$ 2x = 0.2 So $(2x)^2 < 2x$ which contradicts Bethany's statement So it is not always true	3	M1 for attempting to demonstrate that for somevalue of x in range $0 < x < \frac{1}{2}$ it is not true A1 for complete working A1 for explanationorM1 for attempt including squaring bracket A1 for complete solution for either $x < 0$ or $x \ge \frac{1}{2}$ A1 for explanationorB1 for a counter example given without working
			Total	3	
3	а		x, x + 1, x + 2, x + 3 x + (x + 1) + (x + 2) + (x + 3) or $4x + 6$ 2(x + 3)	1 1 1	accept correct alternatives
	b		e.g. 1 + 2 + 3 + 4 4 <i>x</i> + 6 is not a multiple of 4	1 1	Allow e.g. 1 + 2 + 3 + 4 = 10 is not a multiple of 4
			Total	5	

Question	Answer/Indicative content	Marks	Part marks a	and guidance		
4	$\frac{9x+7}{(x-2)(x+3)} \text{ or } \frac{9x+7}{x^2+x-6}$ final answer	3	M1 for $5(x + 3) + 4(x - 2)$ or $5x + 15 + 4x - 8$ or better seen M1 for correct common denominator seen as a denominator	Mark final answer but isw for incorrect expansion of denominator after correct answer seen Condone missing brackets in denominator for M1 if intention clear, but for 3 marks all brackets must be present or correct expansion found Method marks may be awarded when expression is written as two fractions Examiner's Comments Many candidates understood what was required and attempted to use a common denominator and add the fractions. The final denominator was often correct even if candidates had expanded the brackets in the denominator. It should be noted that expansion of the brackets in the denominator is not required in a fraction in its simplest form, but for full credit the expansion must be correct if this form is used. Candidates often showed the correct expression of $5(x + 3) + 4(x - 2)$ for the numerator, however errors in the expansion were often seen, with $15 - 8$ often evaluated as -7 instead of $+7$. Very few candidates went on to spoil a correct answer by incorrect cancelling. Some weaker candidates simply added the terms on the numerator and the terms on the denominator leading to 9 an answer of $\overline{2x + 1}$.		

Q	uestio	n	Answer/Indicative content	Marks	Part marks a	nd guidance
			Total	3		
5			7 + 5√3 _{final answer}	1	M1 for multiplication of terms in brackets leading to $4 + \sqrt{3} + 4\sqrt{3} + 3$ with at least two terms correct in an expression with three or four terms	For M1 $(\sqrt{3})^2$ or $\sqrt{3}\sqrt{3}$ or $\sqrt{9}$ is acceptable in place of the 3 For M1 $5\sqrt{3}$ may be counted as two of the required three or four terms eg 5 + $5\sqrt{3}$ would score M1 <u>Examiner's Comments</u> Many candidates used the correct method to expand the brackets and gained at least 1 mark. Some errors were seen in one or more of the terms in the four term expansion, for example 4 × $1 = 5, \sqrt{3} \times \sqrt{3} = 9, 4 \times \sqrt{3} =$ $\sqrt{12}$, but generally at least two of the terms were correct. Simplifying the surds to reach the correct answer of $7 + 5\sqrt{3}$ was more problematic and many candidates did not know that $\sqrt{3} + 4\sqrt{3} = 5\sqrt{3}$.
			Total	2		

Qı	Question		Answer/Indicative content	Marks	Part marks and guidance		
6	а		$8y^2$ final answer	2	B1 for $\frac{8y^4}{y^2}$ or $\frac{16y^2}{2}$ or $\frac{8y^2}{1}$	Examiner's Comments	
						This was not well done. $\frac{8y^2}{y}$ was a common wrong answer where candidates cancelled the terms incorrectly. It was clear that cancelling was not well	
						understood.	
	b		$4x^3 - 24x^2$ final answer	2	B1 for $4x^3$ or – $24x^2$ seen	Examiner's Comments This was tackled well with many fully correct answers.	
			Total	4			

Q	uestio	n	Answer/Indicative content	Marks	Part marks a	nd guidance
7	а		$\frac{x-1}{x+2}$	4	M3 for $(x - 4)(x - 1)$ and $(x - 4)(x + 2)$ Or M2 for $(x - 4)(x - 1)$ or $(x - 4)(x + 2)$ Or M1 for $(x \pm 4)(x \pm 1)$ or $(x \pm 4)(x \pm 2)$	Examiner's Comments A good number of candidates factorised correctly and cancelled the common factor appropriately. There was the odd sign error in some work. Many just cancelled the x^2 terms and thought they had done enough whereas others went further, trying to cancel the <i>x</i> terms and the the number terms separately.
	b		a = - 4 b = 18	3	B2 for $a = -4$ Or M1 for $x^2 + ax + ax + a^2$ or $(x - 4)^2$ After zero scored SC1 for <i>their b</i> = $(their a)^2 + 2$	Examiner's Comments There were few correct answers. Multiplying out the brackets and comparing coefficients seemed to be the common approach though some tried to complete the square on the left. Less able candidates used a trial and improvement approach with no success.
			Total	7		

Qı	uestio	n	Answer/Indicative content	Marks	Part marks and guidance
8			<i>a</i> = 11	1	0 for 11 if it comes from eg $11x^2$
			b = -21	1	Allow 1 for –21 independent of errors in coping with the <i>x</i> 's
					If 0 for question, allow SC1 for LHS = $11x - 21$ soi
					Examiner's Comments
					Candidates often managed to simplify the left hand side to $11x - 21$, but seeing the connection with <i>a</i> and <i>b</i> was rarer. Sometimes <i>b</i> was given as 21 instead of -21. Some candidates used the wrong order of operations and attempted to work out the left hand side as $(5x + 3)(2x - 7)$.
			Total	2	

Q	uestio	n	Answer/Indicative content	Marks	Part marks and guidance	
9	а		(x – 3)(x + 3) final answer	1	Examiner's Comments Only better candidates knew how to factorise the quadratic expressions.	
	b		(x – 3)(x – 1) final answer	2	M1 for $(x \pm 3)(x \pm 1)$ Examiner's Comments Only better candidates knew how to factorise the quadratic expressions.	
	с		$\frac{x-1}{x+3}$ final answer	1	Examiner's Comments Some wrote their fraction upside down. Many candidates used very spurious algebra to simplify their fraction.	
			Total	4		

Q	uestio	n	Answer/Indicative content	Marks	Part marks and guidance		
10	а		$\frac{3x}{2y}$ final answer	2	B1 for $\frac{3xy}{2y^2}$ or $\frac{15x}{10y}$ or $\frac{1.5x}{y}$ seen Examiner's Comments Some candidates only partially cancelled the fraction or left their answer in an inappropriate form eg. $1.5xy^{-1}$.		
	b		2 <i>x</i> (2 <i>x</i> + 5 <i>y</i>) final answer	2	B1 for $2(2x^2 + 5xy)$ or $x(4x + 10y)$ seen Or SC1 for $4x(x + 2.5y)$ or $(2x + 0)(2x + 5y)$ seen Examiner's Comments This was usually correct though a few candidates only took one common factor. There were those who saw the word 'factorise' and the x^2 in the expression and so tried to create two sets of brackets. These were usually unsuccessful.		
			Total	4			

Q	uestion	Answer/Indicative content	Marks	Part marks and guidance		
11	а	(x + 5)(x - 3) final answer	2	B1 for $(x \pm 5)(x \pm 3)$ seen		
	b	-5, (+)3	FT1	FT from <i>their</i> 2 brackets only		
	c	$\frac{x+5}{x+3}$ final answer	2	B1 for $(x + 3)(x - 3)$ seen Examiner's Comments Part (a) was very often correct. Occasionally, the signs in the brackets were wrong or it was treated as an equation and solutions were found. Less aware candidates only factorised the letter parts of the expression and wrote $x(x + 2) - 15$. Whilst many gave the two correct values, a number only gave the positive solution. Some candidates failed to realise the significance of the word 'hence' and started again, using trial and improvement or the quadratic formula. Better candidates knew to factorise $x^2 - 9$ first, though a significant number 'cancelled' the x^2 terms $\frac{2x - 15}{-9}$ either leaving $\frac{2x - 15}{-9}$ as their answer or going further with spurious cancelling.		
		Total	5			

Q	Question		Answer/Indicative content	Marks	Part marks and guidance
12			<u>Three</u> of 3 × 4; 3 × √7; 4 × √7; √7 × √7 oe	M1	Examiner's Comments This question was answered well. Most obtained the correct answer and those who decided to give their answer as a decimal usually did so after correctly multiplying out the brackets. Surprisingly, some left their answer as $12 + 7\sqrt{7} + 7$ and others had difficulty in finding $3\sqrt{7} + 4\sqrt{7}$.
			19 + 7√7 final answer	B1	
			Total	2	
13			7 <i>x</i> final answer	2	B1 for $\frac{7x}{1}$ or for $\frac{14x}{2}$ or $\frac{7x^2}{x}$ seen Examiner's Comments This was answered quite well with candidates dealing appropriately with both the number and the <i>x</i> terms. Some only partially simplified the expression.
			Total	2	

M1 for $(a^{-4})^{-2}$ or $\left(\frac{1}{a^{4}}\right)^{-2}$ or $\left(\frac{1}{a^{4}}\right)^{-2}$ or $\left(\frac{a^{9}}{a^{5}}\right)^{2}$ or $\frac{a^{9}}{a^{5}}$ or $\frac{a^{-10}}{a^{-18}}$ or $\frac{a^{18}}{a^{10}}$ seen Examiner's Comments Candidates who understood the laws of indices could reach a correct answer in part (b), usually showing a correct intermediate step of	Question A	Answer/Indicative content	Marks	Part marks a	nd guidance
either $(a^{-4})^{-2}$ or $\frac{a^{-10}}{a^{-18}}$. Candidates again failed to gain full credit because of inability to deal with negative numbers, with "2 × "4 seen evaluated as "8 or "6 and "10 – "18 seen evaluated incorrectly. Common misconceptions were that 2 should be subtracted from each of the powers or that a power of "2 was equivalent to the square root.				M1 for $(a^{-4})^{-2}$ or $\left(\frac{1}{a^4}\right)^{-2}$ or $\left(\frac{a^9}{a^5}\right)^2$ or or $\frac{a^{-10}}{a^{-18}}$ or $\frac{a^{18}}{a^{10}}$ seen Examiner's Comments Candidates who understood the laws of indices could reach a correct answer in part (b), usually showing a correct intermediate step of either $(a^{-4})^{-2}$ or $\frac{a^{-10}}{a^{-18}}$. Candidates again failed to gain full credit because of inability to deal with negative numbers, with $^{-2} \times ^{-4}$ seen evaluated as $^{-8}$ or $^{-6}$ and $^{-10} - ^{-18}$ seen evaluated incorrectly. Common misconceptions were that 2 should be subtracted from each of the powers or that a power of $^{-2}$ was equivalent to the	nd guidance condone a ⁻⁴⁻² for M1

Question	Answer/Indicative content	Marks	Part marks a	nd guidance
b	$\frac{14 - x}{(x - 2)(x + 1)} \text{ or } \frac{14 - x}{x^2 - x - 2}$	3	M1 for $4(x + 1) - 5(x - 2)$ or $4x + 4 - 5x + 10$ with three terms correct or better seen M1 for correct common denominator seen as denominator Examiner's Comments Many candidates had no idea how to approach part (c) and tried to incorrectly subtract or cancel the numerators and denominators. However, a reasonable proportion of the candidates identified the correct process of using a common denominator and showed some partially correct working. Problems with negatives caused many errors in this part as well, with simplification of 4(x + 1) - 5(x - 2) to $4x + 4-5x - 10$ being very common. Some candidates who had reached answers of the correct form then went on to incorrectly 'cancel' terms, for example going from $\frac{-x - 6}{x^2 - x - 2}$ to $\frac{-6}{x^2 - 2}$.	Mark final answer but isw for incorrect expansion of denominator after correct denominator seen May be in two separate fractions condone missing final bracket in denominator
	Total	5		

Qı	uestio	n	Answer/Indicative content	Marks	Part marks and guidance		
15			(<i>x</i> − 5) ² − 15 final answer	3	B2 for – 15 or FT their $(x \pm a)^2$ or B1 for $(x - 5)^2$ If 0 scored award SC2 for $(x - 5)^2 - 15$ in working Examiner's Comments Most candidates could not answer this correctly. In many successful attempts candidates wrote $(x - 5)^2$ clearly and then expanded it to $x^2 - 10x + 25$, which then made it possible to find the value of <i>b</i> .	mark final answer and condoneor double signs eg + – 15	
			Total	3			

Q	uestio	n	Answer/Indicative content	Marks	Part marks and guidance	
16	а		<i>х</i> ⁶	2	M1 for x^{12} or $(x^n)^{\frac{1}{2}} = x^{0.5n}$ eg $(x^6)^{\frac{1}{2}} = x^3$ Examiner's Comments Many candidates were unsure of the rules for indices. Working was often haphazard and difficult to follow. A common error was $x9 \div x-3 = x9 - 3 = x6$ leading to a final answer of x3. Several incorrect methods led to a seemingly correct answer e.g. $x3 \div$ $x-3 = x6$ or $x18 \div x-6 = x12$ then $(x12)0.5 = x6$.	
	b		$\frac{x+5}{x+3}$ final answer	4	B2 for $(x + 5)(x - 3)$ or B1 for $(x + a)(x + b)$ where $a + b = 2$ or $ab = 15$ and B1 for $(x + 3)(x - 3)$ Examiner's Comments Many candidates did not recognise the quadratics and attempted to cancel terms. It was common to see x^2 being cancelled in the numerator and denominator with $2x^{-}6$ being a common answer. Those who did factorise usually reached the correct final answer. A few gave an unsimplified answer while others spoilt a correct answer by further wrong cancelling of x to give $\frac{5}{3}$.	
			Total	6		

Qı	uestio	n	Answer/Indicative content	Marks	Part marks a	nd guidance
17		i	$(x-3)^2 - 5$ as final answer	3	B1 for $(x - 3)^2$ B2FT for – 5 or a correct FT from <i>their</i> ' $(x - 3)^{2'}$	condone + -5 and + -3 FT $(x - p)^2$ only
						If this is blank (NR) then you can award SC2 if $(x - 3)^2 - 5$ [= 0] is seen in (b)(ii)
		ii	0.8, 5.2	2	B1, B1 correct or FT <i>their</i> (i) accept $3 + \sqrt{5}$, $3 - \sqrt{5}$ for 2 marks if 0 scored SC1 for 5.236 and 0.763 rot to at least 2 dp Examiner's Comments This posed problems and although some were able to halve the ⁻ 6 and obtain $(x - 3)^2$, they could not find a way to work out ⁻ 5. A common answer was 13 or ⁻ 13 from 9 + 4. Some wrote $(x + 3)^2$ although the question was set out in the usual way. Many of them did go on to work out the ⁻⁵ correctly. In (b)(ii) few used the answer to (i) and so it was common to see the quadratic formula used, in some cases very successfully.	
			Total	5		

Q	Question		Answer/Indicative content	Marks	Part marks a	nd guidance
18	а	i	<i>x</i> ⁸	1	Mark final anaswer	
		ii	<i>x</i> ⁶	1	Mark final answer	
					Examiner's Comments	
					Examiner's Comments The majority of candidates correctly applied the laws of indices in parts (i) and (ii). Only a small minority made the expected errors of multiplying or dividing the powers, but some candidates thought they were being asked for the powers and gave the answers as 8 and 6.	

Question	Answer/Indicative content	Marks	Part marks a	nd guidance
b	$\frac{3x-4}{x+1}$	4	Mark final answer M1 for $(3x + 4)(3x - 4)$ seen AND M2 for $(3x + 4)(x + 1)$ seen Or M1 for factors using integers excluding 0 giving two terms correct when expanded or $(3x \pm 4)(x \pm 1)$ AND M1 for correct simplification of <i>their</i> algebraic fraction Max 3 marks if answer is incorrect Examiner's Comments Most candidates did not understand what was required in this part and many omitted the question completely with others trying to cancel individual terms or to treat it as an equation to solve. Of those candidates who understood that factorisation was required, most successfully factorised the numerator as the difference of two squares and many went on to reach the correct final answer although a number had difficulty factorising the denominator. Some candidates gained one of the two available marks for factorising the denominator by finding 'factors' that would expand to give two terms correct, many from use of a trial and error approach. Following an incorrect factorisation of the denominator some candidates reached an expression that could be cancelled down and gained a further method mark for this.	e.g. M1 for (3 <i>x</i> + 1)(<i>x</i> + 4)

Question	Answer/Indicative content	Marks	Part marks and guidance	
	Total	6		
19	7 10 <i>y</i> oe final answer	2	M1 for $\frac{3 \times 5}{5 \times 2y}$ and $\frac{4 \times 2}{2 \times 5y}$ oe soi	Accept integer / integer values only for 2 marks eg $\frac{7y}{10y^2} \text{but not eg} \frac{3.5}{5y}$
			OR SC1 for final answer $\frac{7}{10^{\text{oe}}}$ Examiner's Comments Many candidates correctly subtracted the algebraic fractions and reached the correct answer. As the question did not require an answer in its simplest form the common answers of $\frac{7}{10y} \frac{7y}{10y^2}$ were both accepted. Some candidates attempted to use a common denominator but failed to deal with the <i>y</i> terms correctly and reached an answer of $\frac{7y}{10y}$ or $\frac{7}{10}$ which were both given 1 mark. Some candidates simply subtracted the numerators and subtracted	10y ² but not eg 5y which would get M1
	Total	2	the denominators and did not score.	

Que	estion	Answer/Indicative content	Marks	Part marks a	nd guidance
20		(3 <i>x</i> – 1)(5 <i>x</i> + 2)	2	M1 for $(3x \pm 1)(5x \pm 2)$ seen or pair of factors giving two correct terms when expanded, seen or implied in table Examiner's Comments Many candidates clearly understood what was required in factorising an expression. Many candidates realised that $15x^2$ was the product of $5x$ and $3x$ or $15x$ and x and went on to give an expression that expanded to give $15x^2$ and -2 . Very few candidates went on to check that the expansion of their brackets would also give $+ x$ as the third term. Some candidates simplified the problem by factorising $x^2 + x - 2$, then multiplying their result by 15 and others tried to take out a common factor, often of only the first two terms.	Condone omission of final bracket only Accept $(1 - 3x)(-5x - 2)$ for 2 marks Accept eg $(15x - 1)(x + 2)$ for M1
		Total	2		

Q	Question		Answer/Indicative content	Marks	Part marks and guidance
21			$(x-5)^2$ final answer	1	
			–9 final answer	2	FT their $(x - 5)^2$ final answerExaminer's CommentsThis topic was regularly not answered well on the previous qualification and this continues here. In the bracket there were some who wrote $x + 5$ instead of x $- 5$ and there were many who thought the value of b to be + 16.
			Total	3	

Question	Answer/Indicative content	Marks	Part marks and guidance
22	$\frac{x+4}{x+1}$ final answer nfww	4	M1 for nfww please (x + 4)(x - check AND working not just answer (x + 1) Or M1 for x(x + 1) - 4(x + 1) seen or x(x - 4) + 1(x - 4) seen or for (x + a) (x + b) where a + b = -3 or ab = -4 Examiner's Comments In part (a) those who knew to factorise the numerator and denominator usually gained full marks. Some candidates equated $x^2 - 16$ with $(x - 4)^2$, whilst the weaker candidates cancelled the x^2 terms and 16 by 4 to reach the incorrect answer of $\frac{-4}{-3x}$.
	Total	4	

Question	Answer/Indicative content	Marks	Part marks and guidance
23	$\frac{7x+2}{(x-1)(x+2)} \text{ or } \frac{7x+2}{x^2+x-2} \text{ as final}$ answer	3 3 AO1.3b	B1 for $(x-1)(x+2)$ or 1)(x+2) or $x^2 + x - 2$ seen as a denominator M1 for $3(x + 1)$ 2) x + 4(x-1) or $3x + 6 + 1$ 4x - 4 soi Examiner's Comment Only a minority of candidates simplified the indices correctly in part (a). There was a wide variety of wrong answers, the most common coming from adding the powers to get $3y^{-1}$, but others included $2y^7$, $2y^1$, $3y^7$ and $3y$. Many candidates scored full marks in part (b) however and many others made a very good attempt, often scoring 2 method marks. The multiplying out of the $4(x-1)$ 1) bracket to $4x - 1$ led to many lost marks. Quite a few candidates reached the correct answer and then went on to try and simplify the fraction, even though there was no common factor between the numerator correctly, but then collected the terms as 7x - 2. There were some answers of $\frac{7}{2x+1}$ and $\frac{7}{(x-1)(x+2)}$.
	Total	3	

Question		n	Answer/Indicative content	Marks	Part marks and guidance	
24		i	a ⁴	1	Examiner's Comments Part (a) was answered well, the incorrect answers seen were (i) a^3 and (ii) b^8 due to incorrect laws being applied.	
		ii	b ¹⁵	1	Examiner's Comments Part (a) was answered well, the incorrect answers seen were (i) a^3 and (ii) b^8 due to incorrect laws being applied.	
			Total	2		

Question Answer/Indicative content Marks Part marks and guidance	Part marks and guidance		
25 $6x^3 + 23x^2 - 33x + 10$ 4 $M3 \text{ for a fully correct method with at most one error e.g. (2x^2 + 9x - 5)(3x - 2) = 6x^3 + 27x^2 - 18x + 10 \text{ or better or } -4x^2 - 18x + 10 \text{ or better or } -4x^2 - 18x + 10 \text{ or better or } -4x^2 - 18x + 10 \text{ or better or } -4x^2 - 18x + 10x - x - 5 \text{ or } 3x^2 + 15x - 2x - 10 \text{ or better } -5 \text{ or } 3x^2 + 15x - 2x - 10 \text{ or better } -7 \text{ or } -10 \text{ or better } -10 \text{ or } -10 $			

Question		'n	Answer/Indicative content	Marks	Part marks and guidance	
					tend to have more success.	
			Total	4		
26	a		(x – 3) <i>2</i> + 11 final answer	3	B1 for $(x - 3)^2$ B2 for +11or FT their $(x - 3)^2$ Examiner's CommentsPart (a) was astraightforward questionand yet many candidatesfailed to progress. Some didget the square term correct, $(x - 3)^2$ and then theyusually put +20 for the 'b'term. Few knew how tocalculate the constant termand no-one checked theiranswer by expanding.	
	b		(3, 11)	2	B1FT for each partFT their (x $-a)^2 + b$ e.g. (a, b)Examiner's CommentsPart (b) was testing understanding the use of this technique to find the turning point and very few knew how to do this.	
			Total	5		